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Motivation

e Previous topics in the seminar:
Similarities of molecules (RNA sequences) solely based on
primary structure (Recall: Talks for Chapter 5)
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Motivation

e Previous topics in the seminar:
Similarities of molecules (RNA sequences) solely based on
primary structure (Recall: Talks for Chapter 5)

e However:
In order to derive the functions of molecules in living
beings the spatial structure is of essential significance

e Now:
Incorporate additional knowledge of spatial structure into
the similarity comparison
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Recapitulation: Protein Structure Hierarchy

Primary Structure: Sequence of nucleotides (Strings)

Secondary Structure: Folding of the RNA with itself (e.g., by
hydrogen bounds)

Tertiary Structure: real spatial conformation: positions of single
atoms in space, angle of bindings, etc.
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Example
P Primary Structure

AGGUCAGU. ..

Images from Bdckenhauer, Bongarts — Algorithmic Aspects of Bioinformatics (2007), p. 320
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Protein Data Bases
There are several databases containing the higher-level
structural information of biological molecules obtained by

o X-Ray crystallography, or
¢ NMR spectroscopy.
Examples:

Protein Data Bank (PDB)

http://www.rcsb.org/pdb/

100.000 entries

RNA STRAND
http://www.rnasoft.ca/strand/

focused on RNA secondary structure
4.000 entries
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From Secondary Structures to Arc-Annotated Sequences

Goal: Find representation that enables processing/comparison
of secondary structure.

A
—a Su—c— N
e
TJU\A- _A G\A
B
C
/ \
A C
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From Secondary Structures to Arc-Annotated Sequences
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From Secondary Structures to Arc-Annotated Sequences

Goal: Find representation that enables processing/comparison
of secondary structure.

G—G
A
—a Su—c— N
/G
—U A—G
19 SA- "'C/ ~A
| |
/ \
A C
N S
A G G
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Arc-Annotated Sequence

Definition
Let s=s155...5, be a string over an alphabet ¥ and let
P C {(i,j)|1 <i<j< n}be an unordered set of position pairs in

S.
We call S = (s, P) an arc-annotated string with string s and arc
set P. A pair from the arc set P is called an arc.
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Classes of Arc-Annotated Sequences

C1 No two arcs share a
common endpoint

* k ok ok k ok x k ok *x Kk Kk x Kk *x *x

C2 No two arcs cross each UNLIMITED
other
C3 No two arcs are nested PR rosse T
UNLIMITED No restrictions x5 x */*\* *NEST@* * * %
CROSSING C1
NESTED C1, C2 COAIN
CHAIN C1,C2,C3 FEEEERAR ST

PLAIN No arcs at all

Figure from Bdckenhauer, Bongarts — Algorithmic Aspects of Bioinformatics (2007), p. 341
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Classes of Arc-Annotated Sequences

C1 No two arcs share a
common endpoint

* k ok ok k ok x k ok *x Kk Kk x Kk *x *x

C2 No two arcs cross each UNLIMITED
other
C3 No two arcs are nested PR rosse T
UNLIMITED No restrictions x5 x */*\* *NEST@* * * %
CROSSING C1
NESTED C1, C2 COAIN
CHAIN C1,C2,C3 FEEEERAR ST

PLAIN No arcs at all
PLAIN C CHAIN C NESTED C CROSSING C UNLIMITED.

Figure from Bdckenhauer, Bongarts — Algorithmic Aspects of Bioinformatics (2007), p. 341
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Patterns and Substructures in RNA

j+1 Corresponding arc-annontated string featuring a Stem
= NESTED
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Patterns and Substructures in RNA

i . . . . j

Arc-annontated string for a Hairpin Loop
= CHAIN C NESTED

Hairpin Loop
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Patterns and Substructures in RNA

i+ky+1

N

j—kp—1 j i i+ky+1

Corresponding arc-annontated string =- NESTED

Interior Loop
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Patterns and Substructures in RNA

Corresponding arc-annontated string
= NESTED

Multiple Loop
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Excourse: Pseudoknots

Definition (Pseudoknot)
The secondary structure contains a pseudoknot if there exists
two base pairs (/,j) and (k,/) such that i < k < j < [ holds.

Example

A

N~ U—U—C—C—G/

/AfG*G*G*C*A*A*C*U*C*G*A

kA/A/

U—G—A—G— C*U\m
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Definition (Pseudoknot)
The secondary structure contains a pseudoknot if there exists
two base pairs (/,j) and (k,/) such that i < k < j < I holds.

Example
6
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i 8 7

i i 13 12 11 10 9
AfoGfoCfAfA*C*U*C*G*A

/18 17 16 15 14 i ;
C—U—_

19 A U*G*A*G
21/22 23 24 25 26 27
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A
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Pseudoknots in Arc-Annotated Sequences

UUCCGGAAGCUCAACGGGAAAAUGAGTE CUWU

Secondary structures with a pseudonknot translated to arc-annotated
sequences will be in CROSSING.
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Consistent Mapping
Definition (Consistent Mapping)

Lets=s1s8s...spand t = ... I, be two strings and let

W= wiWs... W, be a common subsequence of s and t.

Then a bijective mapping ¢ from a subset Ms C {1,...,n} onto
a subset M; C {1,...,m} is called consistent with w if it satisfies

the following properties:

© Mapping ¢ preserves the order of symbols along the
strings s and t, i.e., for all i1, ib € Mg,

<& (p(l1) < (p(lg)

® The symbols on positions assigned by ¢ are equal, i.e., for
all i € Mg,
Si = (i)

In the following, we also write

X, y)co <= o(x)=y
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Arc-Preserving Common Subsequences

Definition (Arc-Preserving Common Subsequence)

Let S=(51S2...5m,Ps) and T = (t£2... 1y, P;) be two
arc-annotated sequences over an alphabet . A string is called
an arc-preserving common subsequence of S and T if there
exists a common subsequence w of s and t and a mapping ¢
consistent with w such that

O si=tforall (i,j) € ¢, and
® for all pairs of elements ({i1,j1), (i2,j2)) from ¢

(i1,i2) € Ps <= (j1,J2) € Pt.
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Example

¥ ={A G U,C}

o =1{(1,4),(5,5),(6,6),(9,8),(10,9),(11,11) ,(12,12)}

() L0 o
S: ——-AUCDAGCGAU-CG
T. GUAA---AGA-AUGGCG

N =
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Longest Arc-Preserving Common Subsequence (LAPCS)

Definition (LAPCS(LEVEL4,LEVEL)))

By LAPCS(LEVEL+,LEVEL, we denote the optimization
problem for two arc-annotated strings S € LEVEL4 and
T € LEVEL, to find the longest common arc-annotated
substring.
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LAPCS(PLAIN,PLAIN)

Theorem

The optimization problem LAPCS(PLAIN,PLAIN) is computable
in O (m-n), where m and n are the length of the input strings.

Proof.

This problem is the same as the global alignment problem
discussed in a previous talk. We can leverage dynamic
programming and backtracking to solve this. O

16/45



NP-Hardness of LAPCS(CROSSING,CROSSING)

Theorem
LAPCS(CROSSING,CROSSING) is an NP-hard optimization
problem.

Idea: Consider DECLAPCS, the corresponding decision
problem of LAPCS. Reduce input instance of CLIQUE to
DECLAPCS.
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Recap: CLIQUE Problem

Definition

Let G=(V, E) be an undirected graph. A subset V' C V'is
called a clique, if every two vertices v;,v; € V', where v; # v; are
connected by an edge, i.e., {v;,v;} € E.

Definition (CLIQUE Decision Problem)

Input: An undirected graph G = (V, E) and a positive integer k.
Output: YEs if G contains a clique V' of size k, NO, otherwise.

Clique is a well-known NP-complete decision problem.
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Example: CLIQUE

Is there a clique for k =37

Vo

/N

V1 V3

Vs V4
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Example: CLIQUE

Is there a clique for k =37

V2

/" N\

Vq V3

Vs V4
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Arc-Annotated String Construction from Input-Graph

/\

>< |

baaaaabbaaaaabbaaaaabbaaaaabbaaaaab
\ Il Il Il Il |

Block for v4 Block for vo Block for v4  Block for v4  Block for vs
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Arc-Annotated String Construction from Input-Graph

/\

>< |

N, N SN N SN
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L |1 |1 |1 |1 |

Block for v4 Block for vo Block for v4  Block for v4  Block for vs
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Arc-Annotated String Construction from Input-Graph

/\

>< |

SN NS N N N TN
baaaaabbaaaaabbaaaaabbaaaaabbaaaaab
[ [ [ [ [ |

Block for v4 Block for vo Block for v4  Block for v4  Block for vs
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Arc-Annotated String Construction from Input-Graph

/\

>< |

NN N

baaaaabbaaaaab b’@b b@b b@b
[ [ [ [ [ |

Block for v4 Block for vo Block for v4  Block for v4  Block for vs
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Arc-Annotated String Construction from Input-Graph

/\

>< |

S:

N TN

baadaaaabbaaaaabbaaaaab b'mb b@b
\ Il Il Il Il |

Block for v4 Block for vo Block for v4  Block for v4  Block for vs
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Arc-Annotated String Construction from Input-Graph

/\

>< |

baadaaaabbaaaaabbaaaaabbaaaaabbaaaaab
\ Il Il Il Il |

Block for v4 Block for vo Block for v4  Block for v4  Block for vs
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Arc-Annotated String Construction from Input-Graph

/\

>< |

baadaaaabbaaaaabbaaaaabbaaaaabbaaaaab
\ Il Il Il Il |

Block for v4 Block for vo Block for v4  Block for v4  Block for vs
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Arc-Annotated String Construction from Input-Graph

/\

>< |

X

baaaaab b@b baaaaabbaaaaab b@b
\ Il Il Il Il |

Block for v4 Block for vo Block for v4  Block for v4  Block for vs
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Arc-Annotated String Construction from Input-Graph

/\

>< |

LN N

baaaaab baaaaab baaaaabbaaaaabbaaaaab
\ Il Il Il Il |

Block for v4 Block for vo Block for v4  Block for v4  Block for vs
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Arc-Annotated String Construction from Input-Graph

/\

>< |

badaaabbaaaaabbaaaaabbaaaaabbaaaaab
\ Il Il Il Il |

Block for v4 Block for vo Block for v4  Block for v4  Block for vs
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Arc-Annotated String Construction from Input-Graph

/\

>< |

S:

ﬁm\/

badaaabbaaaaabbaaaaa bbaaaaabb€®b
\ Il Il Il Il |

Block for v4 Block for vo Block for v4  Block for v4  Block for vs
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Arc-Annotated String Construction from Input-Graph

/\

>< |

badaaabbaaaaabbaaaaabbaaaaabbaaaaab
\ Il Il Il Il |

Block for v4 Block for vo Block for v4  Block for v4  Block for vs
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Arc-Annotated String Construction from Input-Graph

/\

>< |

m/@

baaaaabbaaaaabbaaaaa aaaabbaaaaab
L J

Block for v4 Block for vo Block for v4  Block for v4  Block for vs
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Arc-Annotated String Construction from Input-Graph

/\

>< |

badaaabbaaaaabbaaaaabbaaaaabbaaaaab
\ Il Il Il Il |

Block for v4 Block for vo Block for v4  Block for v4  Block for vs
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Arc-Annotated String Construction from Input-Graph

/\

>< |

N N\

badaaabbaaaaabbaaaaabbaaaaab b€®b
\ Il Il Il Il |

Block for v4 Block for vo Block for v4  Block for v4  Block for vs
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Arc-Annotated String Construction from Input-Graph

/\

>< |

badaaabbaaaaabbaaaaabbaaaaabbaaaaab
\ Il Il Il Il |

Block for v4 Block for vo Block for v4  Block for v4  Block for vs
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Reduction construction formally

Definition
A undirected graph G=(V,E) , with |V| = n can be encoded
as an arc-annotated string s = (s, Ps).

s= (ba"pb)"

arcs encoding edges
Ps = {((i-1)(n+2)+j+1,(—1)(n+2)+i+1)|{v, v} €E)}
U {((i—1)(n+2)+1,i(n+2))]ie{1,...,n}}1

arcs between two b’s of a block
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Analog: Construction of the Clique

V2

/7N

Vi

V3

l?aaal? tljaaal? kl)aaal?

Block for v;, Block for v;, Block for v;,

Note that | T| = k- (k+2), where k is the size of the clique.
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Input for DECLAPCS(CROSSING,CROSSING)

Is there an arc-preserving common subsequence of size |T|?

S:

baaaaabbaaaaabbaaadaabbaaaaabbaaaaab
ba b ba a bba aa b
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Proof (1): Polynominal Time Reduction

Lemma
The input (S, T,|T|) to DECLAPCS(CROSSING,CROSSING)
from (G, k) can be performed in polynomial time.

e S can be directly constructed from G and has quadratic
length in the number of vertices.

¢ A fully connected graph Gr of size k can be constructed in
polynomial-time.

e Analogously to S, now also T and | T| can be constructed
in polynomial time by constructing a fully connected graph
Gr. L]

24/45



Proof (Il): Correctness “=”

Lemma

Existence of a clique of size k in G implies existence of an
arc-preserving common subsequence of S and T of size |T|.

e Let{v,...,v, } be aclique of size k in the input graph.
e We can align k blocks of S to the k blocks of T.

¢ |n each block again k symbols are matched to symbols at
positions ii,..., i in the block of S.

e Arcs between two b’s are matched since we always map
complete blocks to complete blocks

* Vv;,...,V are vertices of a clique, thus their corresponding
arcs between a’s are spanned by a arcs.

O
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Proof (lll): Correctness “<”

Lemma

Existence of an arc-preserving common subsequence of S and
T of size |T| implies a clique of size k in G.

o |T|=k-(k+2).
e Due to arcs over b framing a block only blocks can be
mapped to blocks.

e T represents a clique of size k and blocks are constructed
the same way as in S.

e Thus i1,..., ik blocks that are matched from T to S
= {V,...,v, } is a clique of size k.
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NP-hardness of LAPCS(NESTED,NESTED)

Theorem
LAPCS(NESTED,NESTED) is an NP-hard optimization problem.

e Proof [Lin et al., 2002] not presented here due to many
preliminaries.

¢ Idea: Reduction to variant of Maximum Independent Set
(cubic planar graph) using several graph transformations
with book embedding.
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Complexity Results Overview for LAPCS Classes

PLAIN | CHAIN | NESTED | CROSSING | UNLIMITED
UNLIMITED NP-hard
CROSSING NP-hard
NESTED O(nm®) NP-hard
CHAIN O(nm)
PLAIN O(nm)

Table: Complexity Results for LAPCS(LEVEL1,LEVEL2)

Due to hardness results: LAPCS approximation algorithms.
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2-Approximation Algorithm for LAPCS(CROSSING,CROSSING)

Idea: Use Longest Common Subsequence without arcs as a
starting point and remove arc-conflicting parts successively.

2-Approximation Algorithm for LAPCS(CROSSING,CROSSING)
Input: Two arc-annotated strings S = (s, Ps) and T = (t, P;) with
S, T € CROSSING.

© Determine longest common subsequence w of s and t.
Let ¢ a mapping consistent to w.

® Construct the conflict-graph G, from ¢.

® For each connected component in G, delete every second
vertex.

O From the resulting graph G, construct output string w’
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Construction of the Conflict-Graph

Definition (Conflict-Graph)
Given a mapping ¢ that is consistent with by the longest

common subsequence w of s and t.
Gy =(V,E)

o V={{,)) (i) € ¢}
o E={{(i1,j1),(i2,/2)}| either (i1,i2) € Psor (j1,}2) € Pt}

Note: G, describes position pairs that are not arc-preserving.
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Conflict-Graph — Example

0=1{(1,1),(3,2),(4,3),(6,5),(7,6),(8,7),(9,9),(10,10), (11,11},
(12,12),(13,13),(14,14) ,(15,15) ,(16,16),(17,18),(18,19)}

S: AACGGUAC GUACGUAC GU
T A-CGUUACGGUACGUACCGU
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Conflict-Graph — Example

0=1{(1,1),(3,2),(4,3),(6,5),(7,6),(8,7),(9,9),(10,10),(11,11),
(12,12),(13,13),(14,14),(15,15),(16,16),(17,18),(18,19)}

o O 68VAE BONEE Ry &1
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Conflict-Graph Observation

s A Boo 1.1
T: A U

Lemma

G, has at most node degree two for two arc-annotated strings
T,S € CROSSING.

Proof.

e Since T,S € CROSSING no two arcs share a common
start/endpoint.

e Incoming edge: w.l.0.g. at most one arc-mismatch for
incoming edges
¢ QOutgoing edge: analogous.

32/45



Approximation Algorithm — Step 3

For each connected component in G, delete every second
vertex.

W - o

1,1 3,2 4,3 6,5 7,6 8,7 9,9 10,10 11,11

12,12 13,13 14,14 15,15 16,16 17,18,\18,19
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Approximation Algorithm — Step 3

For each connected component in G, delete every second
vertex.

1,1 4,3 7,6 87 99 10,10

G/.
0!
12,12 13,13 14,14 15,15 16,16 17,18
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Approximation Algorithm — Final Step

Reconstruct corresponding arc-preserving common
subsequence w'.

1,1 4,3 7,6 87 99 10,10

G/.
o
12,12 13,13 14,14 15,15 16,16 17,18
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Approximation Algorithm — Final Step

Reconstruct corresponding arc-preserving common
subsequence w'.

1,1 4,3 7,6 87 99 10,10

G/.
o
12,12 13,13 14,14 15,15 16,16 17,18

& AMCGGUAC BURCEUAL-a
T: A G AUWG
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Correctness Proof (I)

Theorem

The Approximation algorithm computes a feasible solution for
LAPCS(CROSSING,CROSSING).

Proof.
e The string w’ results from removing some symbols in w
and thus is still a common subsequence.
o Also, W' is arc-preserving:

o Connected vertices in the conflict-graph G, denoted
violating position pairs.
¢ The algorithm removes all edges from the conflict graph.

O
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Correctness Proof (Il)

Theorem

The algorithm computes 2-approximation for
LAPCS(CROSSING,CROSSING).

Proof.

Let S=(s,Ps) and T = (¢, P;) be two arc-annotated strings and
Wopt be a longest arc-preserving of Sand T. Let w' be the
output of the approximation algorithm.

e Let w be the longest common subsequence of s and t.
lw| > |Wopt‘-

e Because we delete at most every second vertex in a path
in the conflict-graph it holds that |w'| > 5 vl

« Combining both inequalities leads to |w'| > |W°‘“‘
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Complexity Proof (1)

Theorem

The approximation algorithm requires a running time in
O(n-m), where n and m denote the length of the input strings.

Proof.

o Computation of Longest Common Subsequence: O(n-m).
e Construction of the conflict-graph:

e For two position pairs (i1,j1), (i, j2) € ¢ we need to check
whether (i1,i) € Ps and (ji,j2) € Pt.

e |w| < min(n,m), Thus ¢ contains at most min(n, m) position
pairs, hence construction takes O (min (n, m)2) CO(n-m).
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Complexity Proof (Il)

Proof (Cont.)
Traversal and deletion of nodes in the conflict-graph
e For each node v € V, we need to determine whether v is
an isolated vertex, or part of a path.
e Traverse edges starting from v.
o Euler's handshaking lemma gives Y. deg(v)=2|E|.
veV
e G, has at most node degree 2.
e This yields: |E| <min(n,m).
« The procedure requires O (min(n, m)2> cO(n-m).
e For each path we need to delete every second vertex:
Same reasoning as above: O(n-m).

Reconstruction of w’ from Gy: O (min(n,m)) C O (n-m). O
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Discussion

¢ Algorithm is adjustable, other variants than global
alignment can be used in the initial step.

e 2-approximation is a worst-case approximation.

e However, algorithm conflict graph ignores arcs of
non-matched characters:

o O cacUAE B0ITEIRYL - &1
T A (@UAGOGU CEUAGCG
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Exact Solution with Parametrized Complexity

Concept: “Extract” parameter responsible for the exponential
running time. [Alber et al., 2002]

Parameters: Number of deletions ky and ko in the strings T
and S, respectively.

Idea: Use recursive search tree, investigate smaller substrings,
decrement ki and k» in the recursion.

Complexity: O (3,31%% . min(m, n))
Proof by branching-vector analysis over size the search tree.
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Parametrized Complexity: Cutwidth

Concept: Again, “Extract” parameter responsible for the
exponential running time, here: Cutwidth [Evans, 1999]

Parameters: Cutwidth, i.e. the maximum number of arcs that
cross or end at any arbitrary position of the sequence.
Complexity: O(f(k)-m-n)
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Conclusion

e RNA secondary structures can be represented in terms of
arc-annotated strings

 Distinguish between different classes of arc-annotated
strings

e Similarity comparison motivates the LAPCS problem.

e Unfortunately, LAPCS is NP-hard for relevant cases.

e The LAPCS can be approximated by a 2-approximation
algorithm.
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Conclusion

e RNA secondary structures can be represented in terms of
arc-annotated strings

 Distinguish between different classes of arc-annotated
strings

e Similarity comparison motivates the LAPCS problem.

e Unfortunately, LAPCS is NP-hard for relevant cases.

e The LAPCS can be approximated by a 2-approximation
algorithm.

Thank you for your attention.
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