Structure-Based Comparison of Biomolecules

Benedikt Christoph Wolters

Seminar Bioinformatics Algorithms
RWTH AACHEN

07/17/2015

Outline

@ Introduction and Motivation
Protein Structure Hierarchy
Protein Data Bases

® Arc-Annotated Sequences
From Secondary Structures to Arc-Annotated Sequences
Classes of Arc-Annotated Sequences

® Longest Arc-Preserving Common Subsequence
NP-Hardness of LAPCS(CROSSING,CROSSING)

@ LAPCS 2-Approximation Algorithm
@ Related Approaches and Results

@ Outlook and Conclusion

1/45

Motivation

e Previous topics in the seminar:
Similarities of molecules (RNA sequences) solely based on
primary structure (Recall: Talks for Chapter 5)

2/45

Motivation

e Previous topics in the seminar:
Similarities of molecules (RNA sequences) solely based on
primary structure (Recall: Talks for Chapter 5)

e However:
In order to derive the functions of molecules in living
beings the spatial structure is of essential significance

2/45

Motivation

e Previous topics in the seminar:
Similarities of molecules (RNA sequences) solely based on
primary structure (Recall: Talks for Chapter 5)

e However:
In order to derive the functions of molecules in living
beings the spatial structure is of essential significance

e Now:
Incorporate additional knowledge of spatial structure into
the similarity comparison

2/45

Recapitulation: Protein Structure Hierarchy

Primary Structure: Sequence of nucleotides (Strings)

Secondary Structure: Folding of the RNA with itself (e.g., by
hydrogen bounds)

Tertiary Structure: real spatial conformation: positions of single
atoms in space, angle of bindings, etc.

3/45

Example
P Primary Structure

AGGUCAGU. ..

Images from Bdckenhauer, Bongarts — Algorithmic Aspects of Bioinformatics (2007), p. 320
4/45

Example
P Primary Structure

AGGUCAGU. ..
Secondary Structure
72 76

1

60

53

Images from Bdckenhauer, Bongarts — Algorithmic Aspects of Bioinformatics (2007), p. 320
4/45

Example
P Primary Structure

AGGUCAGU. ..
Secondary Structure Tertiary Structure
72 76

1

60

Images from Bdckenhauer, Bongarts — Algorithmic Aspects of Bioinformatics (2007), p. 320

4/45

Protein Data Bases
There are several databases containing the higher-level
structural information of biological molecules obtained by

o X-Ray crystallography, or
¢ NMR spectroscopy.
Examples:

Protein Data Bank (PDB)

http://www.rcsb.org/pdb/

100.000 entries

RNA STRAND
http://www.rnasoft.ca/strand/

focused on RNA secondary structure
4.000 entries

5/45

http://www.rcsb.org/pdb/
http://www.rnasoft.ca/strand/

From Secondary Structures to Arc-Annotated Sequences

Goal: Find representation that enables processing/comparison
of secondary structure.

A
—a Su—c— N
e
TJU\A- _A G\A
B
C
/ \
A C

6/45

From Secondary Structures to Arc-Annotated Sequences

Goal: Find representation that enables processing/comparison
of secondary structure.

G—G
A
—a Su—c— N
e
TJU\A- _A G\A
B
C
/ \
A C
N

From Secondary Structures to Arc-Annotated Sequences

Goal: Find representation that enables processing/comparison
of secondary structure.

A
_1 A‘// \\‘U —C - \\
i /G
—U A—G
197> "'C/ ~A
| |
/ \
A C
~N 7

6/45

From Secondary Structures to Arc-Annotated Sequences

Goal: Find representation that enables processing/comparison
of secondary structure.

A
_1 A‘// \\‘U —C - \\
H /G
—U A—G
197> "'C/ ~A
| |
/ \
A C
~N 7

6/45

From Secondary Structures to Arc-Annotated Sequences

Goal: Find representation that enables processing/comparison
of secondary structure.

A
_1 A‘// \\‘U —C - \\
H /G
—U A—G
197> "'C/ ~A
| |
/ \
A C
~N 7

6/45

From Secondary Structures to Arc-Annotated Sequences

Goal: Find representation that enables processing/comparison
of secondary structure.

A
_1 A‘// \\‘U —C - \\
H /G
—U A—G
197> "'C/ ~A
| |
/ \
A C
~N 7
A G G

6/45

From Secondary Structures to Arc-Annotated Sequences

Goal: Find representation that enables processing/comparison
of secondary structure.

G—G
A
—a Su—c— N
/G
—U A—G
19 SA- "'C/ ~A
| |
/ \
A C
N S
A G G

6/45

Arc-Annotated Sequence

Definition
Let s=s155...5, be a string over an alphabet ¥ and let
P C {(i,j)|1 <i<j< n}be an unordered set of position pairs in

S.
We call S = (s, P) an arc-annotated string with string s and arc
set P. A pair from the arc set P is called an arc.

7145

Classes of Arc-Annotated Sequences

C1 No two arcs share a
common endpoint

* k ok ok k ok x k ok *x Kk Kk x Kk *x *x

C2 No two arcs cross each UNLIMITED
other
C3 No two arcs are nested PR rosse T
UNLIMITED No restrictions x5 x */** *NEST@* * * %
CROSSING C1
NESTED C1, C2 COAIN
CHAIN C1,C2,C3 FEEEERAR ST

PLAIN No arcs at all

Figure from Bdckenhauer, Bongarts — Algorithmic Aspects of Bioinformatics (2007), p. 341

8/45

Classes of Arc-Annotated Sequences

C1 No two arcs share a
common endpoint

* k ok ok k ok x k ok *x Kk Kk x Kk *x *x

C2 No two arcs cross each UNLIMITED
other
C3 No two arcs are nested PR rosse T
UNLIMITED No restrictions x5 x */** *NEST@* * * %
CROSSING C1
NESTED C1, C2 COAIN
CHAIN C1,C2,C3 FEEEERAR ST

PLAIN No arcs at all
PLAIN C CHAIN C NESTED C CROSSING C UNLIMITED.

Figure from Bdckenhauer, Bongarts — Algorithmic Aspects of Bioinformatics (2007), p. 341

8/45

Patterns and Substructures in RNA

j+1 Corresponding arc-annontated string featuring a Stem
= NESTED

9/45

Patterns and Substructures in RNA

i j

Arc-annontated string for a Hairpin Loop
= CHAIN C NESTED

Hairpin Loop

9/45

Patterns and Substructures in RNA

i+ky+1

N

j—kp—1 j i i+ky+1

Corresponding arc-annontated string =- NESTED

Interior Loop

9/45

Patterns and Substructures in RNA

Corresponding arc-annontated string
= NESTED

Multiple Loop

9/45

Excourse: Pseudoknots

Definition (Pseudoknot)
The secondary structure contains a pseudoknot if there exists
two base pairs (/,j) and (k,/) such that i < k < j < [holds.

Example

A

N~ U—U—C—C—G/

/AfG*G*G*C*A*A*C*U*C*G*A

kA/A/

U—G—A—G— C*U\m

10/45

Excourse: Pseudoknots

Definition (Pseudoknot)
The secondary structure contains a pseudoknot if there exists
two base pairs (/,j) and (k,/) such that i < k < j < I holds.

Example
6

A
o1 2 3 4 5/
\U—U—C—C—G
i 8 7

i i 13 12 11 10 9
AfoGfoCfAfAfoUfoGfA

/18 17 16 15 14 i ;
C—U—_

19 A U*G*A*G
21/22 23 24 25 26 27
20 A
A

10/45

Excourse: Pseudoknots

Definition (Pseudoknot)
The secondary structure contains a pseudoknot if there exists
two base pairs (/,j) and (k,/) such that i < k < j < I holds.

Example
6

A
o1 2 3 4 5/
\U—u—c—c—e
i 8 7

i i 13 12 11 10 9
AfoGfoCfAfA*C*U*C*G*A

/18 17 16 15 14 i ;
C—U—_

19 A U*G*A*G
21/22 23 24 25 26 27
20 A
A

10/45

Pseudoknots in Arc-Annotated Sequences

UUCCGGAAGCUCAACGGGAAAAUGAGTE CUWU

Secondary structures with a pseudonknot translated to arc-annotated
sequences will be in CROSSING.

11/45

Consistent Mapping
Definition (Consistent Mapping)

Lets=s1s8s...spand t = ... I, be two strings and let

W= wiWs... W, be a common subsequence of s and t.

Then a bijective mapping ¢ from a subset Ms C {1,...,n} onto
a subset M; C {1,...,m} is called consistent with w if it satisfies

the following properties:

© Mapping ¢ preserves the order of symbols along the
strings s and t, i.e., for all i1, ib € Mg,

<& (p(l1) < (p(lg)

® The symbols on positions assigned by ¢ are equal, i.e., for
all i € Mg,
Si = (i)

In the following, we also write

X, y)co <= o(x)=y

12/45

Arc-Preserving Common Subsequences

Definition (Arc-Preserving Common Subsequence)

Let S=(51S2...5m,Ps) and T = (t£2... 1y, P;) be two
arc-annotated sequences over an alphabet . A string is called
an arc-preserving common subsequence of S and T if there
exists a common subsequence w of s and t and a mapping ¢
consistent with w such that

O si=tforall (i,j) € ¢, and
® for all pairs of elements ({i1,j1), (i2,j2)) from ¢

(i1,i2) € Ps <= (j1,J2) € Pt.

13/45

Example

¥ ={A G U,C}

o =1{(1,4),(5,5),(6,6),(9,8),(10,9),(11,11) ,(12,12)}

() L0 o
S: ——-AUCDAGCGAU-CG
T. GUAA---AGA-AUGGCG

N =

14/45

Longest Arc-Preserving Common Subsequence (LAPCS)

Definition (LAPCS(LEVEL4,LEVEL)))

By LAPCS(LEVEL+,LEVEL, we denote the optimization
problem for two arc-annotated strings S € LEVEL4 and
T € LEVEL, to find the longest common arc-annotated
substring.

15/45

LAPCS(PLAIN,PLAIN)

Theorem

The optimization problem LAPCS(PLAIN,PLAIN) is computable
in O (m-n), where m and n are the length of the input strings.

Proof.

This problem is the same as the global alignment problem
discussed in a previous talk. We can leverage dynamic
programming and backtracking to solve this. O

16/45

NP-Hardness of LAPCS(CROSSING,CROSSING)

Theorem
LAPCS(CROSSING,CROSSING) is an NP-hard optimization
problem.

Idea: Consider DECLAPCS, the corresponding decision
problem of LAPCS. Reduce input instance of CLIQUE to
DECLAPCS.

17/45

Recap: CLIQUE Problem

Definition

Let G=(V, E) be an undirected graph. A subset V' C V'is
called a clique, if every two vertices v;,v; € V', where v; # v; are
connected by an edge, i.e., {v;,v;} € E.

Definition (CLIQUE Decision Problem)

Input: An undirected graph G = (V, E) and a positive integer k.
Output: YEs if G contains a clique V' of size k, NO, otherwise.

Clique is a well-known NP-complete decision problem.

18/45

Example: CLIQUE

Is there a clique for k =37

Vo

/N

V1 V3

Vs V4

19/45

Example: CLIQUE

Is there a clique for k =37

V2

/" N\

Vq V3

Vs V4

19/45

Arc-Annotated String Construction from Input-Graph

/\

>< |

baaaaabbaaaaabbaaaaabbaaaaabbaaaaab
\ Il Il Il Il |

Block for v4 Block for vo Block for v4 Block for v4 Block for vs

20/45

Arc-Annotated String Construction from Input-Graph

/\

>< |

baaaaabbaaaaabbaaaaabbaaaaabbaaaaab
\ Il Il Il Il |

Block for v4 Block for vo Block for v4 Block for v4 Block for vs

20/45

Arc-Annotated String Construction from Input-Graph

/\

>< |

N, N SN N SN
baaaaabbaaaaabbaaaaabbaaaaabbaaaaab
L |1 |1 |1 |1 |

Block for v4 Block for vo Block for v4 Block for v4 Block for vs

20/45

Arc-Annotated String Construction from Input-Graph

/\

>< |

SN NS N N N TN
baaaaabbaaaaabbaaaaabbaaaaabbaaaaab
[[[[[|

Block for v4 Block for vo Block for v4 Block for v4 Block for vs

20/45

Arc-Annotated String Construction from Input-Graph

/\

>< |

NN N

baaaaabbaaaaab b’@b b@b b@b
[[[[[|

Block for v4 Block for vo Block for v4 Block for v4 Block for vs

20/45

Arc-Annotated String Construction from Input-Graph

/\

>< |

S:

N TN

baadaaaabbaaaaabbaaaaab b'mb b@b
\ Il Il Il Il |

Block for v4 Block for vo Block for v4 Block for v4 Block for vs

20/45

Arc-Annotated String Construction from Input-Graph

/\

>< |

baadaaaabbaaaaabbaaaaabbaaaaabbaaaaab
\ Il Il Il Il |

Block for v4 Block for vo Block for v4 Block for v4 Block for vs

20/45

Arc-Annotated String Construction from Input-Graph

/\

>< |

baadaaaabbaaaaabbaaaaabbaaaaabbaaaaab
\ Il Il Il Il |

Block for v4 Block for vo Block for v4 Block for v4 Block for vs

20/45

Arc-Annotated String Construction from Input-Graph

/\

>< |

X

baaaaab b@b baaaaabbaaaaab b@b
\ Il Il Il Il |

Block for v4 Block for vo Block for v4 Block for v4 Block for vs

20/45

Arc-Annotated String Construction from Input-Graph

/\

>< |

LN N

baaaaab baaaaab baaaaabbaaaaabbaaaaab
\ Il Il Il Il |

Block for v4 Block for vo Block for v4 Block for v4 Block for vs

20/45

Arc-Annotated String Construction from Input-Graph

/\

>< |

badaaabbaaaaabbaaaaabbaaaaabbaaaaab
\ Il Il Il Il |

Block for v4 Block for vo Block for v4 Block for v4 Block for vs

20/45

Arc-Annotated String Construction from Input-Graph

/\

>< |

S:

ﬁm\/

badaaabbaaaaabbaaaaa bbaaaaabb€®b
\ Il Il Il Il |

Block for v4 Block for vo Block for v4 Block for v4 Block for vs

20/45

Arc-Annotated String Construction from Input-Graph

/\

>< |

badaaabbaaaaabbaaaaabbaaaaabbaaaaab
\ Il Il Il Il |

Block for v4 Block for vo Block for v4 Block for v4 Block for vs

20/45

Arc-Annotated String Construction from Input-Graph

/\

>< |

m/@

baaaaabbaaaaabbaaaaa aaaabbaaaaab
L J

Block for v4 Block for vo Block for v4 Block for v4 Block for vs

20/45

Arc-Annotated String Construction from Input-Graph

/\

>< |

badaaabbaaaaabbaaaaabbaaaaabbaaaaab
\ Il Il Il Il |

Block for v4 Block for vo Block for v4 Block for v4 Block for vs

20/45

Arc-Annotated String Construction from Input-Graph

/\

>< |

N N\

badaaabbaaaaabbaaaaabbaaaaab b€®b
\ Il Il Il Il |

Block for v4 Block for vo Block for v4 Block for v4 Block for vs

20/45

Arc-Annotated String Construction from Input-Graph

/\

>< |

badaaabbaaaaabbaaaaabbaaaaabbaaaaab
\ Il Il Il Il |

Block for v4 Block for vo Block for v4 Block for v4 Block for vs

20/45

Reduction construction formally

Definition
A undirected graph G=(V,E) , with |V| = n can be encoded
as an arc-annotated string s = (s, Ps).

s= (ba"pb)"

arcs encoding edges
Ps = {((i-1)(n+2)+j+1,(—1)(n+2)+i+1)|{v, v} €E)}
U {((i—1)(n+2)+1,i(n+2))]ie{1,...,n}}1

arcs between two b’s of a block

21/45

Analog: Construction of the Clique

V2

/7N

Vi

V3

l?aaal? tljaaal? kl)aaal?

Block for v;, Block for v;, Block for v;,

Note that | T| = k- (k+2), where k is the size of the clique.

22/45

Input for DECLAPCS(CROSSING,CROSSING)

Is there an arc-preserving common subsequence of size |T|?

S:

baaaaabbaaaaabbaaadaabbaaaaabbaaaaab
ba b ba a bba aa b

23/45

Proof (1): Polynominal Time Reduction

Lemma
The input (S, T,|T|) to DECLAPCS(CROSSING,CROSSING)
from (G, k) can be performed in polynomial time.

e S can be directly constructed from G and has quadratic
length in the number of vertices.

¢ A fully connected graph Gr of size k can be constructed in
polynomial-time.

e Analogously to S, now also T and | T| can be constructed
in polynomial time by constructing a fully connected graph
Gr. L]

24/45

Proof (Il): Correctness “=”

Lemma

Existence of a clique of size k in G implies existence of an
arc-preserving common subsequence of S and T of size |T|.

e Let{v,...,v, } be aclique of size k in the input graph.
e We can align k blocks of S to the k blocks of T.

¢ |n each block again k symbols are matched to symbols at
positions ii,..., i in the block of S.

e Arcs between two b’s are matched since we always map
complete blocks to complete blocks

* Vv;,...,V are vertices of a clique, thus their corresponding
arcs between a’s are spanned by a arcs.

O

25/45

Proof (lll): Correctness “<”

Lemma

Existence of an arc-preserving common subsequence of S and
T of size |T| implies a clique of size k in G.

o |T|=k-(k+2).
e Due to arcs over b framing a block only blocks can be
mapped to blocks.

e T represents a clique of size k and blocks are constructed
the same way as in S.

e Thus i1,..., ik blocks that are matched from T to S
= {V,...,v, } is a clique of size k.

26/45

NP-hardness of LAPCS(NESTED,NESTED)

Theorem
LAPCS(NESTED,NESTED) is an NP-hard optimization problem.

e Proof [Lin et al., 2002] not presented here due to many
preliminaries.

¢ Idea: Reduction to variant of Maximum Independent Set
(cubic planar graph) using several graph transformations
with book embedding.

27/45

Complexity Results Overview for LAPCS Classes

PLAIN | CHAIN | NESTED | CROSSING | UNLIMITED
UNLIMITED NP-hard
CROSSING NP-hard
NESTED O(nm®) NP-hard
CHAIN O(nm)
PLAIN O(nm)

Table: Complexity Results for LAPCS(LEVEL1,LEVEL2)

Due to hardness results: LAPCS approximation algorithms.

28/45

2-Approximation Algorithm for LAPCS(CROSSING,CROSSING)

Idea: Use Longest Common Subsequence without arcs as a
starting point and remove arc-conflicting parts successively.

2-Approximation Algorithm for LAPCS(CROSSING,CROSSING)
Input: Two arc-annotated strings S = (s, Ps) and T = (t, P;) with
S, T € CROSSING.

© Determine longest common subsequence w of s and t.
Let ¢ a mapping consistent to w.

® Construct the conflict-graph G, from ¢.

® For each connected component in G, delete every second
vertex.

O From the resulting graph G, construct output string w’

29/45

Construction of the Conflict-Graph

Definition (Conflict-Graph)
Given a mapping ¢ that is consistent with by the longest

common subsequence w of s and t.
Gy =(V,E)

o V={{,)) (i) € ¢}
o E={{(i1,j1),(i2,/2)}| either (i1,i2) € Psor (j1,}2) € Pt}

Note: G, describes position pairs that are not arc-preserving.

30/45

Conflict-Graph — Example

0=1{(1,1),(3,2),(4,3),(6,5),(7,6),(8,7),(9,9),(10,10), (11,11},
(12,12),(13,13),(14,14) ,(15,15) ,(16,16),(17,18),(18,19)}

S: AACGGUAC GUACGUAC GU
T A-CGUUACGGUACGUACCGU

31/45

Conflict-Graph — Example

0=1{(1,1),(3,2),(4,3),(6,5),(7,6),(8,7),(9,9),(10,10),(11,11),
(12,12),(13,13),(14,14),(15,15),(16,16),(17,18),(18,19)}

o O 68VAE BONEE Ry &1

31/45

Conflict-Graph — Example

0=1{(1,1),(3,2),(4,3),(6,5),(7,6),(8,7),(9,9),(10,10),(11,11),
(12,12),(13,13),(14,14),(15,15),(16,16),(17,18),(18,19)}

o O 68VAE BONEE Ry &1

1,1 3,2 4.3 6,5 7,6 8,7 9,9 10,10 11,11
G(p:
12,12 13,13 14,14 15,15 16,16 17,18 18,19

31/45

Conflict-Graph — Example

0=1{(1,1),(3,2),(4,3),(6,5),(7,6),(8,7),(9,9),(10,10),(11,11),
(12,12),(13,13),(14,14),(15,15),(16,16),(17,18),(18,19)}

o K068 VAE BONEE Ry &1

1,1 3,2 4.3 6,5 7,6 8,7 9,9 10,10 11,11
G(p:
12,12 13,13 14,14 15,15 16,16 17,18 18,19

31/45

Conflict-Graph — Example

o=1{(1,1),(3,2),(4,3),(6,5),(7,6),(8,7),(9,9),(10,10),(11,11),
(12,12),(13,13),(14,14),(15,15),(16,16),(17,18),(18,19)}

o K068 VAE BONEE IRy €U

—

1,1 3,2 4.3 6,5 7,6 8,7 9,9 10,10 11,11
G(P:
12,12 13,13 14,14 15,15 16,16 17,18 18,19

31/45

Conflict-Graph — Example

o=1{(1,1),(3,2),(4,3),(6,5),(7,6),(8,7),(9,9),(10,10),(11,11),
(12,12),(13,13),(14,14),(15,15),(16,16),(17,18),(18,19)}

o O68VAE BONEE Ry €O

—

1,1 3,2 4.3 6,5 7,6 8,7 9,9 10,10 11,11
G(P:
12,12 13,13 14,14 15,15 16,16 17,18 18,19

31/45

Conflict-Graph — Example

o=1{(1,1),(3,2),(4,3),(6,5),(7,6),(8,7),(9,9),(10,10),(11,11),
(12,12),(13,13),(14,14),(15,15),(16,16),(17,18),(18,19)}

o O68VAE BONEE Ry €O

— —

1,1 3,2 4.3 6,5 7,6 8,7 9,9 10,10 11,11
G(P:
12,12 13,13 14,14 15,15 16,16 17,18 18,19

31/45

Conflict-Graph — Example

o=1{(1,1),(3,2),(4,3),(6,5),(7,6),(8,7),(9,9),(10,10),(11,11),
(12,12),(13,13),(14,14),(15,15),(16,16),(17,18),(18,19)}

o O 6BV E BNy €O

— —

1,1 3,2 4.3 6,5 7,6 8,7 9,9 10,10 11,11
G(P:
12,12 13,13 14,14 15,15 16,16 17,18 18,19

31/45

Conflict-Graph — Example

o=1{(1,1),(3,2),(4,3),(6,5),(7,6),(8,7),(9,9),(10,10),(11,11),
(12,12),(13,13),(14,14),(15,15),(16,16),(17,18),(18,19)}

o O 6BV E BNy €O

— — —

1,1 3,2 4.3 6,5 7,6 8,7 9,9 10,10 11,11
G(P:
12,12 13,13 14,14 15,15 16,16 17,18 18,19

31/45

Conflict-Graph — Example

o=1{(1,1),(3,2),(4,3),(6,5),(7,6),(8,7),(9,9),(10,10),(11,11),
(12,12),(13,13),(14,14),(15,15),(16,16),(17,18),(18,19)}

o O 68 UAE BONETERY €O

— — —

1,1 3,2 4.3 6,5 7,6 8,7 9,9 10,10 11,11
G(P:
12,12 13,13 14,14 15,15 16,16 17,18 18,19

31/45

Conflict-Graph — Example

o=1{(1,1),(3,2),(4,3),(6,5),(7,6),(8,7),(9,9),(10,10),(11,11),
(12,12),(13,13),(14,14),(15,15),(16,16),(17,18),(18,19)}

o 68 VKE BONTERY €U

— — —

1,1 3,2 4.3 6,5 7,6 8,7 9,9 10,10 11,11
G(P:
12,12 13,13 14,14 15,15 16,16 17,18 18,19

31/45

Conflict-Graph — Example

o=1{(1,1),(3,2),(4,3),(6,5),(7,6),(8,7),(9,9),(10,10) ,(11,11),
(12,12),(13,13),(14,14),(15,15),(16,16),(17,18),(18,19)}

o 68 VKE BONTERY €U
" UW ov

— — —

1,1 3,2 4.3 6,5 7,6 8,7 9,9 10,10 11,11
Gy :
12,12 13,13 14,14 15,15 16,16 17,18 18,19

31/45

Conflict-Graph — Example

o=1{(1,1),(3,2),(4,3),(6,5),(7,6),(8,7),(9,9),(10,10) ,(11,11),
(12,12),(13,13),(14,14),(15,15),(16,16),(17,18),(18,19)}

o 68V S BONTERY U
" UW ov

— — —

1,1 3,2 4.3 6,5 7,6 8,7 9,9 10,10 11,11
Gy :
12,12 13,13 14,14 15,15 16,16 17,18 18,19

31/45

Conflict-Graph — Example

o=1{(1,1),(3,2),(4,3),(6,5),(7,6),(8,7),(9,9),(10,10) ,(11,11),
(12,12),(13,13),(14,14),(15,15),(16,16),(17,18),(18,19)}

o O 68VAE BONTERY &1
" UW ov

— — —

1,1 3,2 4.3 6,5 7,6 8,7 9,9 10,10 11,11
Gy :
12,12 13,13 14,14 15,15 16,16 17,18 18,19

31/45

Conflict-Graph — Example

o=1{(1,1),(3,2),(4,3),(6,5),(7,6),(8,7),(9,9),(10,10) ,(11,11),
(12,12),(13,13),(14,14),(15,15),(16,16),(17,18),(18,19)}

o O 68VAE BENETE AL €U
" UW ov

— — —

1,1 3,2 4.3 6,5 7,6 8,7 9,9 10,10 11,11
Gy :
12,12 13,13 14,14 15,15 16,16 17,18 18,19

31/45

Conflict-Graph — Example

o=1{(1,1),(3,2),(4,3),(6,5),(7,6),(8,7),(9,9),(10,10) ,(11,11),
(12,12),(13,13),(14,14),(15,15),(16,16),(17,18),(18,19)}

o 68 UAE BORTERY &1
" UW ov

— — —

1,1 3,2 4.3 6,5 7,6 8,7 9,9 10,10 11,11
Gy :
12,12 13,13 14,14 15,15 16,16 17,18 18,19

31/45

Conflict-Graph — Example

o=1{(1,1),(3,2),(4,3),(6,5),(7,6),(8,7),(9,9),(10,10) ,(11,11),
(12,12),(13,13),(14,14),(15,15),(16,16),(17,18),(18,19)}

o O 68VAE BONEE AL &1
" UW ov

— — —

1,1 3,2 4.3 6,5 7,6 8,7 9,9 10,10 11,11
Gy :
12,12 13,13 14,14 15,15 16,16 17,18 18,19

31/45

Conflict-Graph — Example

o=1{(1,1),(3,2),(4,3),(6,5),(7,6),(8,7),(9,9),(10,10) ,(11,11),
(12,12),(13,13),(14,14),(15,15),(16,16),(17,18),(18,19)}

o 68 VAE BONERIRY €U
" UW ov

— — —

1,1 3,2 4.3 6,5 7,6 8,7 9,9 10,10 11,11
Gy :
12,12 13,13 14,14 15,15 16,16 17,18 18,19

31/45

Conflict-Graph — Example

o=1{(1,1),(3,2),(4,3),(6,5),(7,6),(8,7),(9,9),(10,10) ,(11,11),
(12,12),(13,13),(14,14),(15,15),(16,16),(17,18),(18,19)}

o 68 VAE BONTIERY €U
" UW ov

— — —

1,1 3,2 4.3 6,5 7,6 8,7 9,9 10,10 11,11
Gy :
12,12 13,13 14,14 15,15 16,16 17,18 18,19

31/45

Conflict-Graph — Example

o=1{(1,1),(3,2),(4,3),(6,5),(7,6),(8,7),(9,9),(10,10) ,(11,11),
(12,12),(13,13),(14,14),(15,15),(16,16),(17,18),(18,19)}

o O 68VAE BONEE IRy €U
" UW ov

— — —

1,1 3,2 4.3 6,5 7,6 8,7 9,9 10,10 11,11
Gy :
12,12 13,13 14,14 15,15 16,16 17,18 18,19

31/45

Conflict-Graph — Example

o=1{(1,1),(3,2),(4,3),(6,5),(7,6),(8,7),(9,9),(10,10) ,(11,11),
(12,12),(13,13),(14,14),(15,15),(16,16),(17,18),(18,19)}

o 68 VAE BONEE Ay U
" UW ov

— — —

1,1 3,2 4.3 6,5 7,6 8,7 9,9 10,10 11,11
Gy :
12,12 13,13 14,14 15,15 16,16 17,18 18,19

31/45

Conflict-Graph — Example

o=1{(1,1),(3,2),(4,3),(6,5),(7,6),(8,7),(9,9),(10,10) ,(11,11),
(12,12),(13,13),(14,14),(15,15),(16,16),(17,18),(18,19)}

o O 68VAE BONTE AL &Y

— — —

1,1 3,2 4.3 6,5 7,6 8,7 9,9 10,10 11,11
Gy :
12,12 13,13 14,14 15,15 16,16 17,18 18,19

31/45

Conflict-Graph — Example

o=1{(1,1),(3,2),(4,3),(6,5),(7,6),(8,7),(9,9),(10,10) ,(11,11),
(12,12),(13,13),(14,14),(15,15),(16,16),(17,18),(18,19)}

o O 68VAE BONTE AL &Y

— — —

1,1 3,2 4.3 6,5 7,6 8,7 9,9 10,10 11,11
Gy :
12,12 13,13 14,14 15,15 16,16 17,18,\18,19

31/45

Conflict-Graph — Example

o=1{(1,1),(3,2),(4,3),(6,5),(7,6),(8,7),(9,9),(10,10) ,(11,11),
(12,12),(13,13),(14,14),(15,15),(16,16),(17,18),(18,19)}

o 68V E DOV AL b
" UW v

— — —

1,1 3,2 4.3 6,5 7,6 8,7 9,9 10,10 11,11
Gy :
12,12 13,13 14,14 15,15 16,16 17,18,\18,19

31/45

Conflict-Graph Observation

s A Boo 1.1
T: A U

Lemma

G, has at most node degree two for two arc-annotated strings
T,S € CROSSING.

Proof.

e Since T,S € CROSSING no two arcs share a common
start/endpoint.

e Incoming edge: w.l.0.g. at most one arc-mismatch for
incoming edges
¢ QOutgoing edge: analogous.

32/45

Approximation Algorithm — Step 3

For each connected component in G, delete every second
vertex.

W - o

1,1 3,2 4,3 6,5 7,6 8,7 9,9 10,10 11,11

12,12 13,13 14,14 15,15 16,16 17,18,\18,19

33/45

Approximation Algorithm — Step 3

For each connected component in G, delete every second
vertex.

W - o

1,1 3,2 43 65 76 87 99 10,10 11,11

12,12 13,13 14,14 15,15 16,16 17,18,\18,19

33/45

Approximation Algorithm — Step 3

For each connected component in G, delete every second
vertex.

o

1,1 4.3 7,6 87 99 10,10 11,11

12,12 13,13 14,14 15,15 16,16 17,18,\18,19

33/45

Approximation Algorithm — Step 3

For each connected component in G, delete every second
vertex.

o

1,1 4,3 7,6 87 99 10,10 11,11

12,12 13,13 14,14 15,15 16,16 17,18,\18,19

33/45

Approximation Algorithm — Step 3

For each connected component in G, delete every second
vertex.

1,1 4,3 7,6 87 9,9 10,10

12,12 13,13 14,14 15,15 16,16 17,18,\18,19

33/45

Approximation Algorithm — Step 3

For each connected component in G, delete every second
vertex.

1,1 4,3 7,6 87 99 10,10

12,12 13,13 14,14 15,15 16,16 17,18,\18,19

33/45

Approximation Algorithm — Step 3

For each connected component in G, delete every second
vertex.

1,1 4,3 7,6 87 99 10,10

12,12 13,13 14,14 15,15 16,16 17,18

33/45

Approximation Algorithm — Step 3

For each connected component in G, delete every second
vertex.

1,1 4,3 7,6 87 99 10,10

G/.
0!
12,12 13,13 14,14 15,15 16,16 17,18

33/45

Approximation Algorithm — Final Step

Reconstruct corresponding arc-preserving common
subsequence w'.

1,1 4,3 7,6 87 99 10,10

G/.
o
12,12 13,13 14,14 15,15 16,16 17,18

34/45

Approximation Algorithm — Final Step

Reconstruct corresponding arc-preserving common
subsequence w'.

1,1 4,3 7,6 87 99 10,10

G/.
o
12,12 13,13 14,14 15,15 16,16 17,18

& AMCGGUAC BURCEUAL-a
T: A G AUWG

34/45

Correctness Proof (I)

Theorem

The Approximation algorithm computes a feasible solution for
LAPCS(CROSSING,CROSSING).

Proof.
e The string w’ results from removing some symbols in w
and thus is still a common subsequence.
o Also, W' is arc-preserving:

o Connected vertices in the conflict-graph G, denoted
violating position pairs.
¢ The algorithm removes all edges from the conflict graph.

O

35/45

Correctness Proof (Il)

Theorem

The algorithm computes 2-approximation for
LAPCS(CROSSING,CROSSING).

Proof.

Let S=(s,Ps) and T = (¢, P;) be two arc-annotated strings and
Wopt be a longest arc-preserving of Sand T. Let w' be the
output of the approximation algorithm.

e Let w be the longest common subsequence of s and t.
lw| > |Wopt‘-

e Because we delete at most every second vertex in a path
in the conflict-graph it holds that |w'| > 5 vl

« Combining both inequalities leads to |w'| > |W°‘“‘

36/45

Complexity Proof (1)

Theorem

The approximation algorithm requires a running time in
O(n-m), where n and m denote the length of the input strings.

Proof.

o Computation of Longest Common Subsequence: O(n-m).
e Construction of the conflict-graph:

e For two position pairs (i1,j1), (i, j2) € ¢ we need to check
whether (i1,i) € Ps and (ji,j2) € Pt.

e |w| < min(n,m), Thus ¢ contains at most min(n, m) position
pairs, hence construction takes O (min (n, m)2) CO(n-m).

37/45

Complexity Proof (Il)

Proof (Cont.)
Traversal and deletion of nodes in the conflict-graph
e For each node v € V, we need to determine whether v is
an isolated vertex, or part of a path.
e Traverse edges starting from v.
o Euler's handshaking lemma gives Y. deg(v)=2|E|.
veV
e G, has at most node degree 2.
e This yields: |E| <min(n,m).
« The procedure requires O (min(n, m)2> cO(n-m).
e For each path we need to delete every second vertex:
Same reasoning as above: O(n-m).

Reconstruction of w’ from Gy: O (min(n,m)) C O (n-m). O

38/45

Discussion

¢ Algorithm is adjustable, other variants than global
alignment can be used in the initial step.

e 2-approximation is a worst-case approximation.

e However, algorithm conflict graph ignores arcs of
non-matched characters:

o O cacUAE B0ITEIRYL - &1
T A (@UAGOGU CEUAGCG

39/45

Exact Solution with Parametrized Complexity

Concept: “Extract” parameter responsible for the exponential
running time. [Alber et al., 2002]

Parameters: Number of deletions ky and ko in the strings T
and S, respectively.

Idea: Use recursive search tree, investigate smaller substrings,
decrement ki and k» in the recursion.

Complexity: O (3,31%% . min(m, n))
Proof by branching-vector analysis over size the search tree.

40/45

Parametrized Complexity: Cutwidth

Concept: Again, “Extract” parameter responsible for the
exponential running time, here: Cutwidth [Evans, 1999]

Parameters: Cutwidth, i.e. the maximum number of arcs that
cross or end at any arbitrary position of the sequence.
Complexity: O(f(k)-m-n)

41/45

Conclusion

e RNA secondary structures can be represented in terms of
arc-annotated strings

 Distinguish between different classes of arc-annotated
strings

e Similarity comparison motivates the LAPCS problem.

e Unfortunately, LAPCS is NP-hard for relevant cases.

e The LAPCS can be approximated by a 2-approximation
algorithm.

42/45

Conclusion

e RNA secondary structures can be represented in terms of
arc-annotated strings

 Distinguish between different classes of arc-annotated
strings

e Similarity comparison motivates the LAPCS problem.

e Unfortunately, LAPCS is NP-hard for relevant cases.

e The LAPCS can be approximated by a 2-approximation
algorithm.

Thank you for your attention.

42/45

References |

[§ Alber, J., Gramm, J., Guo, J., and Niedermeier, R. (2002).
Towards optimally solving the longest common
subsequenceproblem for sequences with nested arc
annotations in linear time.

In Apostolico, A. and Takeda, M., editors, Combinatorial
Pattern Matching, volume 2373 of Lecture Notes in
Computer Science, pages 99—114. Springer Berlin
Heidelberg.

[§ Béckenhauer, H.-J. and Bongartz, D. (2007).
Algorithmic Aspects of Bioinformatics.
Springer.

43/45

References Il

[§ Evans, P. A. (1999).

Algorithms and Complexity for Annotated Sequence
Analysis.

PhD thesis, Victoria, B.C., Canada, Canada.
AAINQ41369.

El Jiang, T., Lin, G.-H., Ma, B., and Zhang, K. (2000).
The longest common subsequence problem for
arc-annotated sequences.

In Combinatorial Pattern Matching, pages 154—165.
Springer.

44/45

References llI

[@ Lin, G., Chen, Z.-Z., Jiang, T., and Wen, J. (2002).
The longest common subsequence problem for sequences

with nested arc annotations.
Journal of Computer and System Sciences, 65(3):465 —

480.
Special Issue on Computational Biology 2002.

45/45

	Introduction and Motivation
	Protein Structure Hierarchy
	Protein Data Bases

	Arc-Annotated Sequences
	From Secondary Structures to Arc-Annotated Sequences
	Classes of Arc-Annotated Sequences

	Longest Arc-Preserving Common Subsequence
	NP-Hardness of LAPCS(Crossing,Crossing)

	LAPCS 2-Approximation Algorithm
	Related Approaches and Results
	Outlook and Conclusion

