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Motivation

• Previous topics in the seminar:
Similarities of molecules (RNA sequences) solely based on
primary structure (Recall: Talks for Chapter 5)

• However:
In order to derive the functions of molecules in living
beings the spatial structure is of essential significance

• Now:
Incorporate additional knowledge of spatial structure into
the similarity comparison
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Recapitulation: Protein Structure Hierarchy

Primary Structure: Sequence of nucleotides (Strings)
Secondary Structure: Folding of the RNA with itself (e.g., by

hydrogen bounds)
Tertiary Structure: real spatial conformation: positions of single

atoms in space, angle of bindings, etc.
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Example
Primary Structure
AGGUCAGU...

Secondary Structure

13.1 RNA Secondary Structure Prediction 321

computation. Intuitively, property (i) requires that each base can be paired
with at most one other base. Hence, a base is either paired or unpaired. Prop-
erty (ii) ensures that a base pair is either a Watson-Crick pair or one of the
also relatively stable pairs (G, U) or (U, G). While in reality other pairings may
also occur, they are so rare that we may ignore them here. To allow for pair-
ings in the same molecule, the RNA strand has to fold to a certain degree.
Property (iii) describes the fact that the bends within such foldings cannot be
too sharp, since this is prohibited by the binding angles between the atoms.
We thus assume in particular that no pair should occur in the secondary struc-
ture where the corresponding bases are at distance less than 4 in the primary
structure.

The real spatial conformation of RNA, i.e., the positions of the single
atoms in space, the angle of the bindings, and so on, is referred to as the ter-
tiary structure of RNA. According to this, the secondary structure represents
a kind of transition on the way from the primary structure of the molecule to
its actual spatial form. That it is indeed a hierarchical intermediate, becomes
clear from Figure 13.1, where the secondary structure of a tRNA, often de-
scribed as trefoil-shaped, contrasts with the tertiary structure, which rather
resembles an “L”. Nevertheless, it is useful to try to figure out the secondary
structure of an RNA first and then utilize the information obtained to gain a
hypothesis of the tertiary structure of the molecule, if the secondary structure
does not reveal the molecule’s fundamental characteristics.
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Fig. 13.1. Secondary and tertiary structure of a tRNA. Bold lines represent base
pairings, dotted lines represent other intermolecular forces
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Images from Böckenhauer, Bongarts – Algorithmic Aspects of Bioinformatics (2007), p. 320
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Protein Data Bases
There are several databases containing the higher-level
structural information of biological molecules obtained by
• X-Ray crystallography, or
• NMR spectroscopy.

Examples:

Protein Data Bank (PDB)
http://www.rcsb.org/pdb/

100.000 entries

RNA STRAND
http://www.rnasoft.ca/strand/

focused on RNA secondary structure
4.000 entries
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From Secondary Structures to Arc-Annotated Sequences

Goal: Find representation that enables processing/comparison
of secondary structure.
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Arc-Annotated Sequence

Definition
Let s = s1s2 . . .sn be a string over an alphabet Σ and let
P ⊆ {(i , j) |1≤ i ≤ j ≤ n} be an unordered set of position pairs in
s.
We call S = (s,P) an arc-annotated string with string s and arc
set P. A pair from the arc set P is called an arc.
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Classes of Arc-Annotated Sequences

C1 No two arcs share a
common endpoint

C2 No two arcs cross each
other

C3 No two arcs are nested

UNLIMITED No restrictions
CROSSING C1

NESTED C1, C2
CHAIN C1, C2, C3
PLAIN No arcs at all

13.2 Structure-Based Comparison of Biomolecules 341
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Fig. 13.11. Representatives from the different classes of arc-annotated strings. The
?-symbol is a wildcard for arbitrary characters

According to these restrictions we may now classify arc-annotated strings
into the following classes.

Definition 13.14. We specify the following classes of arc-annotated strings.

• Unlimited={S = (s, P ) | S is an arc-annotated string}
• Crossing={S = (s, P ) | S ∈ Unlimited and P satisfies (R.1)}.
• Nested={S = (s, P ) |S ∈ Unlimited and P satisfies (R.1) and (R.2)}.
• Chain={S = (s, P ) | S ∈ Unlimited and P satisfies (R.1) to (R.3)}.
• Plain={S = (s, P ) | S ∈ Unlimited and P satisfies (R.4)}.

With respect to this definition we thus obtain the following inclusions:

Plain ( Chain ( Nested ( Crossing ( Unlimited .

Characteristic examples for each of these classes are shown in Figure 13.11.
Recalling our original motivation to study arc-annotated strings, we can relate
the classes to corresponding RNA secondary structures as follows. The class
Crossing includes all secondary structures of RNA as we considered them
in Section 13.1. The only restriction is that for RNA secondary structures we
allow a base only to pair with at most one other base. In particular, we can
represent a pseudoknot in Crossing (see for instance Figure 13.12, where the
pseudoknot from Figure 13.4 is shown in terms of an arc-annotated string). If
we restrict ourselves to structures without pseudoknots, this yields structures
belonging to the class Nested. With nested arcs we can describe all sub-
structures of secondary structure as considered in Section 13.1, such as stems,
hairpin loops, and bulges (see Figure 13.10). The class Chain only contains

PLAIN ( CHAIN ( NESTED ( CROSSING ( UNLIMITED.

Figure from Böckenhauer, Bongarts – Algorithmic Aspects of Bioinformatics (2007), p. 341
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Patterns and Substructures in RNA

...

i +1 • • j−1

i • • j

i−1 • • j +1

...

Stem

j−1 j j + 1 . . . i−1 i i + 1

Corresponding arc-annontated string featuring a Stem
⇒ NESTED
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Patterns and Substructures in RNA

• •

••
•

i • • j

...

Hairpin Loop

i • • • • j

Arc-annontated string for a Hairpin Loop
⇒ CHAIN ⊆ NESTED
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Patterns and Substructures in RNA

...

i +k1 +1• • j−k2−1

•
•
•
•

•
•
•
•

i
• •

j

...

Interior Loop

j−k2−1 . . . j . . . i . . . i + k1 + 1

Corresponding arc-annontated string⇒ NESTED
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Patterns and Substructures in RNA

. . .
•
•
• • • •

. . .•
•
•

••••
•

...

i

j l

m

no

Multiple Loop

i . . . j . . . l . . . m . . . n . . . o

Corresponding arc-annontated string
⇒ NESTED
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Excourse: Pseudoknots

Definition (Pseudoknot)
The secondary structure contains a pseudoknot if there exists
two base pairs (i , j) and (k , l) such that i < k < j < l holds.

Example

U U C C G

A

AGCUCAACGGGA

A

A
A

U G A G C U

. . .

1 2 3 4 5

6

78910111213

1415161718

19

20

21 22 23 24 25 26 27

. . .
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Pseudoknots in Arc-Annotated Sequences

U U C C G G A A G C U C A A C G G G A A A A U G A G C U

Secondary structures with a pseudonknot translated to arc-annotated
sequences will be in CROSSING.
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Consistent Mapping
Definition (Consistent Mapping)
Let s = s1s2 . . .sn and t = t1t2 . . . tm be two strings and let
w = w1w2 . . .wk be a common subsequence of s and t .
Then a bijective mapping ϕ from a subset Ms ⊆ {1, . . . ,n} onto
a subset Mt ⊆ {1, . . . ,m} is called consistent with w if it satisfies
the following properties:

1 Mapping ϕ preserves the order of symbols along the
strings s and t , i.e., for all i1, i2 ∈Ms,

i1 < i2⇔ ϕ(i1)< ϕ(i2).

2 The symbols on positions assigned by ϕ are equal, i.e., for
all i ∈Ms,

si = tϕ(i)

In the following, we also write

〈x ,y〉 ∈ ϕ ⇐⇒ ϕ(x) = y
12 / 45



Arc-Preserving Common Subsequences

Definition (Arc-Preserving Common Subsequence)
Let S = (s1s2 . . .sm,Ps) and T = (t1t2 . . . tn,Pt ) be two
arc-annotated sequences over an alphabet Σ. A string is called
an arc-preserving common subsequence of S and T if there
exists a common subsequence w of s and t and a mapping ϕ

consistent with w such that
1 si = tj for all 〈i , j〉 ∈ ϕ , and
2 for all pairs of elements (〈i1, j1〉 ,〈i2, j2〉) from ϕ

(i1, i2) ∈ Ps⇐⇒ (j1, j2) ∈ Pt .

13 / 45



Example

Σ = {A,G,U,C}

ϕ = {〈1,4〉 ,〈5,5〉 ,〈6,6〉 ,〈9,8〉 ,〈10,9〉 ,〈11,11〉 ,〈12,12〉}

S: – – – A U C D A G C G A U – C G
T: G U A A – – – A G A – A U G C G

14 / 45



Longest Arc-Preserving Common Subsequence (LAPCS)

Definition (LAPCS(LEVEL1,LEVEL2))
By LAPCS(LEVEL1,LEVEL2 we denote the optimization
problem for two arc-annotated strings S ∈ LEVEL1 and
T ∈ LEVEL2 to find the longest common arc-annotated
substring.

15 / 45



LAPCS(PLAIN,PLAIN)

Theorem
The optimization problem LAPCS(PLAIN,PLAIN) is computable
in O (m ·n), where m and n are the length of the input strings.

Proof.
This problem is the same as the global alignment problem
discussed in a previous talk. We can leverage dynamic
programming and backtracking to solve this.

16 / 45



NP-Hardness of LAPCS(CROSSING,CROSSING)

Theorem
LAPCS(CROSSING,CROSSING) is an NP-hard optimization
problem.

Idea: Consider DECLAPCS, the corresponding decision
problem of LAPCS. Reduce input instance of CLIQUE to
DECLAPCS.

17 / 45



Recap: CLIQUE Problem

Definition
Let G = (V ,E) be an undirected graph. A subset V ′ ⊆ V is
called a clique, if every two vertices vi ,vj ∈ V ′, where vi 6= vj are
connected by an edge, i.e.,

{
vi ,vj

}
∈ E .

Definition (CLIQUE Decision Problem)
Input: An undirected graph G = (V ,E) and a positive integer k .
Output: YES if G contains a clique V ′ of size k , NO, otherwise.

Clique is a well-known NP-complete decision problem.

18 / 45



Example: CLIQUE

Is there a clique for k = 3?

v1

v2

v3

v4v5
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Arc-Annotated String Construction from Input-Graph

v1

v2

v3

v4v5

S :

b a a a a a b

Block for v1

b a a a a a b

Block for v2

b a a a a a b

Block for v3

b a a a a a b

Block for v4

b a a a a a b

Block for v5
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v1

v2

v3

v4v5

v1

S :

b a a a a a b

Block for v1

b a a a a a b

Block for v2

b a a a a a b

Block for v3

b a a a a a b

Block for v4

b a a a a a b

Block for v5

20 / 45



Arc-Annotated String Construction from Input-Graph
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Block for v1
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Arc-Annotated String Construction from Input-Graph
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S :
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Block for v1

b a a a a a b

Block for v2
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Arc-Annotated String Construction from Input-Graph

v1

v2

v3

v4v5

v1

S :

b a a a a a b

Block for v1

b a a a a a b

Block for v2

b a a a a a b

Block for v3

b a a a a a b

Block for v4

b a a a a a b

Block for v5
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Arc-Annotated String Construction from Input-Graph

v1

v2

v3

v4v5

v2

S :

b a a a a a b

Block for v1

b a a a a a b

Block for v2

b a a a a a b

Block for v3

b a a a a a b

Block for v4

b a a a a a b

Block for v5
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Arc-Annotated String Construction from Input-Graph

v1

v2

v3

v4v5

v2

S :

b a a a a a b

Block for v1

b a a a a a b

Block for v2

b a a a a a b

Block for v3

b a a a a a b

Block for v4

b a a a a a b

Block for v5
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Arc-Annotated String Construction from Input-Graph

v1

v2

v3

v4v5

v2

S :

b a a a a a b

Block for v1

b a a a a a b

Block for v2

b a a a a a b

Block for v3

b a a a a a b

Block for v4

b a a a a a b

Block for v5
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Arc-Annotated String Construction from Input-Graph

v1

v2

v3

v4v5

v3

S :

b a a a a a b

Block for v1

b a a a a a b

Block for v2

b a a a a a b

Block for v3

b a a a a a b

Block for v4

b a a a a a b

Block for v5
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Arc-Annotated String Construction from Input-Graph

v1

v2

v3

v4v5

v3

S :

b a a a a a b

Block for v1

b a a a a a b

Block for v2

b a a a a a b

Block for v3

b a a a a a b

Block for v4

b a a a a a b

Block for v5
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Arc-Annotated String Construction from Input-Graph

v1

v2

v3

v4v5 v4
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b a a a a a b

Block for v1

b a a a a a b

Block for v2

b a a a a a b

Block for v3

b a a a a a b

Block for v4

b a a a a a b

Block for v5
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Block for v1

b a a a a a b
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Block for v3
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Block for v4
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Block for v5
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Block for v1
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Arc-Annotated String Construction from Input-Graph

v1

v2

v3

v4v5

S :

b a a a a a b

Block for v1

b a a a a a b

Block for v2

b a a a a a b

Block for v3

b a a a a a b

Block for v4

b a a a a a b

Block for v5
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Reduction construction formally

Definition
A undirected graph G = (V ,E) , with |V |= n can be encoded
as an arc-annotated string s = (s,Ps).

s =
(
banb

)n

Ps =

arcs encoding edges︷ ︸︸ ︷{
((i−1)(n + 2) + j + 1,(j−1)(n + 2) + i + 1)|{vi ,vj} ∈ E)

}
∪ {((i−1)(n + 2) + 1, i(n + 2))|i ∈ {1, . . . ,n}}︸ ︷︷ ︸

arcs between two b’s of a block
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Analog: Construction of the Clique

v1

v2

v3

T :

b a a a b

Block for vi1

b a a a b

Block for vi2

b a a a b

Block for vi3

Note that |T |= k · (k + 2), where k is the size of the clique.
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Input for DECLAPCS(CROSSING,CROSSING)

Is there an arc-preserving common subsequence of size |T |?

S :

b a a a a a b b a a a a a b b a a a a a b b a a a a a b b a a a a a b
b a a a b b a a a b b a a a b

T :
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Proof (I): Polynominal Time Reduction

Lemma
The input (S,T , |T |) to DECLAPCS(CROSSING,CROSSING)
from (G,k) can be performed in polynomial time.

• S can be directly constructed from G and has quadratic
length in the number of vertices.

• A fully connected graph GT of size k can be constructed in
polynomial-time.

• Analogously to S, now also T and |T | can be constructed
in polynomial time by constructing a fully connected graph
GT .
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Proof (II): Correctness “⇒”

Lemma
Existence of a clique of size k in G implies existence of an
arc-preserving common subsequence of S and T of size |T |.

• Let {vi1 , . . . ,vik} be a clique of size k in the input graph.
• We can align k blocks of S to the k blocks of T .
• In each block again k symbols are matched to symbols at

positions i1, . . . , ik in the block of S.
• Arcs between two b’s are matched since we always map

complete blocks to complete blocks
• vi1 , . . . ,vik are vertices of a clique, thus their corresponding

arcs between a ’s are spanned by a arcs.
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Proof (III): Correctness “⇐”

Lemma
Existence of an arc-preserving common subsequence of S and
T of size |T | implies a clique of size k in G.

• |T |= k · (k + 2).

• Due to arcs over b framing a block only blocks can be
mapped to blocks.

• T represents a clique of size k and blocks are constructed
the same way as in S.

• Thus i1, . . . , ik blocks that are matched from T to S
⇒
{

vi1 , . . . ,vik

}
is a clique of size k .
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NP-hardness of LAPCS(NESTED,NESTED)

Theorem
LAPCS(NESTED,NESTED) is an NP-hard optimization problem.

• Proof [Lin et al., 2002] not presented here due to many
preliminaries.

• Idea: Reduction to variant of Maximum Independent Set
(cubic planar graph) using several graph transformations
with book embedding.
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Complexity Results Overview for LAPCS Classes

PLAIN CHAIN NESTED CROSSING UNLIMITED

UNLIMITED NP-hard

CROSSING NP-hard

NESTED O(nm3) NP-hard

CHAIN O(nm)

PLAIN O(nm)

Table: Complexity Results for LAPCS(LEVEL1,LEVEL2)

Due to hardness results: LAPCS approximation algorithms.
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2-Approximation Algorithm for LAPCS(CROSSING,CROSSING)

Idea: Use Longest Common Subsequence without arcs as a
starting point and remove arc-conflicting parts successively.

2-Approximation Algorithm for LAPCS(CROSSING,CROSSING)
Input: Two arc-annotated strings S = (s,Ps) and T = (t ,Pt ) with
S,T ∈ CROSSING.

1 Determine longest common subsequence w of s and t .
Let ϕ a mapping consistent to w .

2 Construct the conflict-graph Gϕ from ϕ.
3 For each connected component in Gϕ delete every second

vertex.
4 From the resulting graph Gϕ ′ construct output string w ′
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Construction of the Conflict-Graph

Definition (Conflict-Graph)
Given a mapping ϕ that is consistent with by the longest
common subsequence w of s and t .
Gϕ = (V ,E)

• V = {〈i , j〉 | 〈i , j〉 ∈ ϕ}
• E = {{〈i1, j1〉 ,〈i2, j2〉}| either (i1, i2) ∈ Ps or (j1, j2) ∈ Pt}

Note: Gϕ describes position pairs that are not arc-preserving.
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Conflict-Graph – Example

ϕ = {〈1,1〉 ,〈3,2〉 ,〈4,3〉 ,〈6,5〉 ,〈7,6〉 ,〈8,7〉 ,〈9,9〉 ,〈10,10〉 ,〈11,11〉 ,
〈12,12〉 ,〈13,13〉 ,〈14,14〉 ,〈15,15〉 ,〈16,16〉 ,〈17,18〉 ,〈18,19〉}

S: A A C G G U A C – G U A C G U A C – G U
T: A – C G U U A C G G U A C G U A C C G U

Gϕ :

1,1 3,2 4,3 6,5 7,6 8,7 9,9 10,10 11,11

12,12 13,13 14,14 15,15 16,16 17,18 18,19
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Conflict-Graph – Example

ϕ = {〈1,1〉 ,〈3,2〉 ,〈4,3〉 ,〈6,5〉 ,〈7,6〉 ,〈8,7〉 ,〈9,9〉 ,〈10,10〉 ,〈11,11〉 ,
〈12,12〉 ,〈13,13〉 ,〈14,14〉 ,〈15,15〉 ,〈16,16〉 ,〈17,18〉 ,〈18,19〉}

S: A A C G G U A C – G U A C G U A C – G U
T: A – C G U U A C G G U A C G U A C C G U

Gϕ :

1,1 3,2 4,3 6,5 7,6 8,7 9,9 10,10 11,11

12,12 13,13 14,14 15,15 16,16 17,18 18,19
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Conflict-Graph – Example

ϕ = {〈1,1〉 ,〈3,2〉 ,〈4,3〉 ,〈6,5〉 ,〈7,6〉 ,〈8,7〉 ,〈9,9〉 ,〈10,10〉 ,〈11,11〉 ,
〈12,12〉 ,〈13,13〉 ,〈14,14〉 ,〈15,15〉 ,〈16,16〉 ,〈17,18〉 ,〈18,19〉}

S: A A C G G U A C – G U A C G U A C – G U
T: A – C G U U A C G G U A C G U A C C G U

Gϕ :

1,1 3,2 4,3 6,5 7,6 8,7 9,9 10,10 11,11

12,12 13,13 14,14 15,15 16,16 17,18 18,19
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Conflict-Graph – Example

ϕ = {〈1,1〉 ,〈3,2〉 ,〈4,3〉 ,〈6,5〉 ,〈7,6〉 ,〈8,7〉 ,〈9,9〉 ,〈10,10〉 ,〈11,11〉 ,
〈12,12〉 ,〈13,13〉 ,〈14,14〉 ,〈15,15〉 ,〈16,16〉 ,〈17,18〉 ,〈18,19〉}

S: A A C G G U A C – G U A C G U A C – G U
T: A – C G U U A C G G U A C G U A C C G U

Gϕ :

1,1 3,2 4,3 6,5 7,6 8,7 9,9 10,10 11,11

12,12 13,13 14,14 15,15 16,16 17,18 18,19

1,1
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Conflict-Graph – Example

ϕ = {〈1,1〉 ,〈3,2〉 ,〈4,3〉 ,〈6,5〉 ,〈7,6〉 ,〈8,7〉 ,〈9,9〉 ,〈10,10〉 ,〈11,11〉 ,
〈12,12〉 ,〈13,13〉 ,〈14,14〉 ,〈15,15〉 ,〈16,16〉 ,〈17,18〉 ,〈18,19〉}

S: A A C G G U A C – G U A C G U A C – G U
T: A – C G U U A C G G U A C G U A C C G U

Gϕ :

1,1 3,2 4,3 6,5 7,6 8,7 9,9 10,10 11,11

12,12 13,13 14,14 15,15 16,16 17,18 18,19

1,1
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Conflict-Graph – Example

ϕ = {〈1,1〉 ,〈3,2〉 ,〈4,3〉 ,〈6,5〉 ,〈7,6〉 ,〈8,7〉 ,〈9,9〉 ,〈10,10〉 ,〈11,11〉 ,
〈12,12〉 ,〈13,13〉 ,〈14,14〉 ,〈15,15〉 ,〈16,16〉 ,〈17,18〉 ,〈18,19〉}

S: A A C G G U A C – G U A C G U A C – G U
T: A – C G U U A C G G U A C G U A C C G U

Gϕ :

1,1 3,2 4,3 6,5 7,6 8,7 9,9 10,10 11,11

12,12 13,13 14,14 15,15 16,16 17,18 18,19

3,2
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Conflict-Graph – Example

ϕ = {〈1,1〉 ,〈3,2〉 ,〈4,3〉 ,〈6,5〉 ,〈7,6〉 ,〈8,7〉 ,〈9,9〉 ,〈10,10〉 ,〈11,11〉 ,
〈12,12〉 ,〈13,13〉 ,〈14,14〉 ,〈15,15〉 ,〈16,16〉 ,〈17,18〉 ,〈18,19〉}

S: A A C G G U A C – G U A C G U A C – G U
T: A – C G U U A C G G U A C G U A C C G U

Gϕ :

1,1 3,2 4,3 6,5 7,6 8,7 9,9 10,10 11,11

12,12 13,13 14,14 15,15 16,16 17,18 18,19

3,2
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Conflict-Graph – Example

ϕ = {〈1,1〉 ,〈3,2〉 ,〈4,3〉 ,〈6,5〉 ,〈7,6〉 ,〈8,7〉 ,〈9,9〉 ,〈10,10〉 ,〈11,11〉 ,
〈12,12〉 ,〈13,13〉 ,〈14,14〉 ,〈15,15〉 ,〈16,16〉 ,〈17,18〉 ,〈18,19〉}

S: A A C G G U A C – G U A C G U A C – G U
T: A – C G U U A C G G U A C G U A C C G U

Gϕ :

1,1 3,2 4,3 6,5 7,6 8,7 9,9 10,10 11,11

12,12 13,13 14,14 15,15 16,16 17,18 18,19

4,3
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Conflict-Graph – Example

ϕ = {〈1,1〉 ,〈3,2〉 ,〈4,3〉 ,〈6,5〉 ,〈7,6〉 ,〈8,7〉 ,〈9,9〉 ,〈10,10〉 ,〈11,11〉 ,
〈12,12〉 ,〈13,13〉 ,〈14,14〉 ,〈15,15〉 ,〈16,16〉 ,〈17,18〉 ,〈18,19〉}

S: A A C G G U A C – G U A C G U A C – G U
T: A – C G U U A C G G U A C G U A C C G U

Gϕ :

1,1 3,2 4,3 6,5 7,6 8,7 9,9 10,10 11,11

12,12 13,13 14,14 15,15 16,16 17,18 18,19

4,3

31 / 45



Conflict-Graph – Example

ϕ = {〈1,1〉 ,〈3,2〉 ,〈4,3〉 ,〈6,5〉 ,〈7,6〉 ,〈8,7〉 ,〈9,9〉 ,〈10,10〉 ,〈11,11〉 ,
〈12,12〉 ,〈13,13〉 ,〈14,14〉 ,〈15,15〉 ,〈16,16〉 ,〈17,18〉 ,〈18,19〉}

S: A A C G G U A C – G U A C G U A C – G U
T: A – C G U U A C G G U A C G U A C C G U

Gϕ :

1,1 3,2 4,3 6,5 7,6 8,7 9,9 10,10 11,11

12,12 13,13 14,14 15,15 16,16 17,18 18,19

6,5
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Conflict-Graph – Example

ϕ = {〈1,1〉 ,〈3,2〉 ,〈4,3〉 ,〈6,5〉 ,〈7,6〉 ,〈8,7〉 ,〈9,9〉 ,〈10,10〉 ,〈11,11〉 ,
〈12,12〉 ,〈13,13〉 ,〈14,14〉 ,〈15,15〉 ,〈16,16〉 ,〈17,18〉 ,〈18,19〉}

S: A A C G G U A C – G U A C G U A C – G U
T: A – C G U U A C G G U A C G U A C C G U

Gϕ :

1,1 3,2 4,3 6,5 7,6 8,7 9,9 10,10 11,11

12,12 13,13 14,14 15,15 16,16 17,18 18,19

7,6
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Conflict-Graph – Example

ϕ = {〈1,1〉 ,〈3,2〉 ,〈4,3〉 ,〈6,5〉 ,〈7,6〉 ,〈8,7〉 ,〈9,9〉 ,〈10,10〉 ,〈11,11〉 ,
〈12,12〉 ,〈13,13〉 ,〈14,14〉 ,〈15,15〉 ,〈16,16〉 ,〈17,18〉 ,〈18,19〉}

S: A A C G G U A C – G U A C G U A C – G U
T: A – C G U U A C G G U A C G U A C C G U

Gϕ :

1,1 3,2 4,3 6,5 7,6 8,7 9,9 10,10 11,11

12,12 13,13 14,14 15,15 16,16 17,18 18,19

7,6
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Conflict-Graph – Example

ϕ = {〈1,1〉 ,〈3,2〉 ,〈4,3〉 ,〈6,5〉 ,〈7,6〉 ,〈8,7〉 ,〈9,9〉 ,〈10,10〉 ,〈11,11〉 ,
〈12,12〉 ,〈13,13〉 ,〈14,14〉 ,〈15,15〉 ,〈16,16〉 ,〈17,18〉 ,〈18,19〉}

S: A A C G G U A C – G U A C G U A C – G U
T: A – C G U U A C G G U A C G U A C C G U

Gϕ :

1,1 3,2 4,3 6,5 7,6 8,7 9,9 10,10 11,11

12,12 13,13 14,14 15,15 16,16 17,18 18,19

8,7
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Conflict-Graph – Example

ϕ = {〈1,1〉 ,〈3,2〉 ,〈4,3〉 ,〈6,5〉 ,〈7,6〉 ,〈8,7〉 ,〈9,9〉 ,〈10,10〉 ,〈11,11〉 ,
〈12,12〉 ,〈13,13〉 ,〈14,14〉 ,〈15,15〉 ,〈16,16〉 ,〈17,18〉 ,〈18,19〉}

S: A A C G G U A C – G U A C G U A C – G U
T: A – C G U U A C G G U A C G U A C C G U

Gϕ :

1,1 3,2 4,3 6,5 7,6 8,7 9,9 10,10 11,11

12,12 13,13 14,14 15,15 16,16 17,18 18,19

9,9
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Conflict-Graph – Example

ϕ = {〈1,1〉 ,〈3,2〉 ,〈4,3〉 ,〈6,5〉 ,〈7,6〉 ,〈8,7〉 ,〈9,9〉 ,〈10,10〉 ,〈11,11〉 ,
〈12,12〉 ,〈13,13〉 ,〈14,14〉 ,〈15,15〉 ,〈16,16〉 ,〈17,18〉 ,〈18,19〉}

S: A A C G G U A C – G U A C G U A C – G U
T: A – C G U U A C G G U A C G U A C C G U

Gϕ :

1,1 3,2 4,3 6,5 7,6 8,7 9,9 10,10 11,11

12,12 13,13 14,14 15,15 16,16 17,18 18,19

10,10
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Conflict-Graph – Example

ϕ = {〈1,1〉 ,〈3,2〉 ,〈4,3〉 ,〈6,5〉 ,〈7,6〉 ,〈8,7〉 ,〈9,9〉 ,〈10,10〉 ,〈11,11〉 ,
〈12,12〉 ,〈13,13〉 ,〈14,14〉 ,〈15,15〉 ,〈16,16〉 ,〈17,18〉 ,〈18,19〉}

S: A A C G G U A C – G U A C G U A C – G U
T: A – C G U U A C G G U A C G U A C C G U

Gϕ :

1,1 3,2 4,3 6,5 7,6 8,7 9,9 10,10 11,11

12,12 13,13 14,14 15,15 16,16 17,18 18,19

11,11
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Conflict-Graph – Example

ϕ = {〈1,1〉 ,〈3,2〉 ,〈4,3〉 ,〈6,5〉 ,〈7,6〉 ,〈8,7〉 ,〈9,9〉 ,〈10,10〉 ,〈11,11〉 ,
〈12,12〉 ,〈13,13〉 ,〈14,14〉 ,〈15,15〉 ,〈16,16〉 ,〈17,18〉 ,〈18,19〉}

S: A A C G G U A C – G U A C G U A C – G U
T: A – C G U U A C G G U A C G U A C C G U

Gϕ :

1,1 3,2 4,3 6,5 7,6 8,7 9,9 10,10 11,11

12,12 13,13 14,14 15,15 16,16 17,18 18,1912,12
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Conflict-Graph – Example

ϕ = {〈1,1〉 ,〈3,2〉 ,〈4,3〉 ,〈6,5〉 ,〈7,6〉 ,〈8,7〉 ,〈9,9〉 ,〈10,10〉 ,〈11,11〉 ,
〈12,12〉 ,〈13,13〉 ,〈14,14〉 ,〈15,15〉 ,〈16,16〉 ,〈17,18〉 ,〈18,19〉}

S: A A C G G U A C – G U A C G U A C – G U
T: A – C G U U A C G G U A C G U A C C G U

Gϕ :

1,1 3,2 4,3 6,5 7,6 8,7 9,9 10,10 11,11

12,12 13,13 14,14 15,15 16,16 17,18 18,1913,13
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Conflict-Graph – Example

ϕ = {〈1,1〉 ,〈3,2〉 ,〈4,3〉 ,〈6,5〉 ,〈7,6〉 ,〈8,7〉 ,〈9,9〉 ,〈10,10〉 ,〈11,11〉 ,
〈12,12〉 ,〈13,13〉 ,〈14,14〉 ,〈15,15〉 ,〈16,16〉 ,〈17,18〉 ,〈18,19〉}

S: A A C G G U A C – G U A C G U A C – G U
T: A – C G U U A C G G U A C G U A C C G U

Gϕ :

1,1 3,2 4,3 6,5 7,6 8,7 9,9 10,10 11,11

12,12 13,13 14,14 15,15 16,16 17,18 18,1914,14
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Conflict-Graph Observation

S: . . . A . . . B . . . C . . .

T: . . . A . . . B . . . C . . .
. . . i , j . . .i , j

Lemma
Gϕ has at most node degree two for two arc-annotated strings
T ,S ∈ CROSSING.

Proof.
• Since T ,S ∈ CROSSING no two arcs share a common

start/endpoint.
• Incoming edge: w.l.o.g. at most one arc-mismatch for

incoming edges
• Outgoing edge: analogous.
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Approximation Algorithm – Step 3

For each connected component in Gϕ delete every second
vertex.

1,1 3,2 4,3 6,5 7,6 8,7 9,9 10,10 11,11

12,12 13,13 14,14 15,15 16,16 17,18 18,19
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Approximation Algorithm – Step 3

For each connected component in Gϕ delete every second
vertex.

G′ϕ :

1,1 4,3 7,6 8,7 9,9 10,10

12,12 13,13 14,14 15,15 16,16 17,18
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Approximation Algorithm – Final Step
Reconstruct corresponding arc-preserving common
subsequence w ′.

G′ϕ :

1,1 4,3 7,6 8,7 9,9 10,10

12,12 13,13 14,14 15,15 16,16 17,18

S: A A C G G U A C – G U A C G U A C – G U
T: A – C G U U A C G G U A C G U A C C G U
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Correctness Proof (I)

Theorem
The Approximation algorithm computes a feasible solution for
LAPCS(CROSSING,CROSSING).

Proof.
• The string w ′ results from removing some symbols in w

and thus is still a common subsequence.
• Also, w ′ is arc-preserving:

• Connected vertices in the conflict-graph Gϕ denoted
violating position pairs.

• The algorithm removes all edges from the conflict graph.
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Correctness Proof (II)

Theorem
The algorithm computes 2-approximation for
LAPCS(CROSSING,CROSSING).

Proof.
Let S = (s,Ps) and T = (t ,Pt ) be two arc-annotated strings and
wopt be a longest arc-preserving of S and T . Let w ′ be the
output of the approximation algorithm.
• Let w be the longest common subsequence of s and t .
|w | ≥

∣∣wopt
∣∣ .

• Because we delete at most every second vertex in a path
in the conflict-graph it holds that |w ′| ≥ |w |2 .

• Combining both inequalities leads to |w ′| ≥ |wopt|
2 .
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Complexity Proof (I)

Theorem
The approximation algorithm requires a running time in
O(n ·m), where n and m denote the length of the input strings.

Proof.
• Computation of Longest Common Subsequence: O(n ·m).
• Construction of the conflict-graph:

• For two position pairs 〈i1, j1〉 ,〈i2, j2〉 ∈ ϕ we need to check
whether (i1, i2) ∈ Ps and (j1, j2) ∈ Pt .

• |w | ≤min(n,m), Thus ϕ contains at most min(n,m) position
pairs, hence construction takes O

(
min(n,m)2

)
⊆O (n ·m) .
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Complexity Proof (II)

Proof (Cont.)
Traversal and deletion of nodes in the conflict-graph
Gϕ = (V ,E):
• For each node v ∈ V , we need to determine whether v is

an isolated vertex, or part of a path.
• Traverse edges starting from v .
• Euler’s handshaking lemma gives ∑

v∈V
deg(v) = 2 |E |.

• Gϕ has at most node degree 2.
• This yields: |E | ≤min(n,m).
• The procedure requires O

(
min(n,m)2

)
⊆O (n ·m) .

• For each path we need to delete every second vertex:
Same reasoning as above: O(n ·m).

Reconstruction of w ′ from Gϕ ′ : O (min(n,m))⊆O (n ·m).
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Discussion

• Algorithm is adjustable, other variants than global
alignment can be used in the initial step.

• 2-approximation is a worst-case approximation.
• However, algorithm conflict graph ignores arcs of

non-matched characters:

S: A A C G G U A C – G U A C G U A C – G U
T: A – C G U U A C G G U A C G U A C C G U
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Exact Solution with Parametrized Complexity

Concept: “Extract” parameter responsible for the exponential
running time. [Alber et al., 2002]

Parameters: Number of deletions k1 and k2 in the strings T
and S, respectively.

Idea: Use recursive search tree, investigate smaller substrings,
decrement k1 and k2 in the recursion.

Complexity: O
(
3,31k1+k2 ·min(m,n)

)
Proof by branching-vector analysis over size the search tree.
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Parametrized Complexity: Cutwidth

Concept: Again, “Extract” parameter responsible for the
exponential running time, here: Cutwidth [Evans, 1999]

Parameters: Cutwidth, i.e. the maximum number of arcs that
cross or end at any arbitrary position of the sequence.
Complexity: O (f (k) ·m ·n)
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Conclusion

• RNA secondary structures can be represented in terms of
arc-annotated strings

• Distinguish between different classes of arc-annotated
strings

• Similarity comparison motivates the LAPCS problem.
• Unfortunately, LAPCS is NP-hard for relevant cases.
• The LAPCS can be approximated by a 2-approximation

algorithm.

Thank you for your attention.

42 / 45



Conclusion

• RNA secondary structures can be represented in terms of
arc-annotated strings

• Distinguish between different classes of arc-annotated
strings

• Similarity comparison motivates the LAPCS problem.
• Unfortunately, LAPCS is NP-hard for relevant cases.
• The LAPCS can be approximated by a 2-approximation

algorithm.

Thank you for your attention.

42 / 45



References I

Alber, J., Gramm, J., Guo, J., and Niedermeier, R. (2002).
Towards optimally solving the longest common
subsequenceproblem for sequences with nested arc
annotations in linear time.
In Apostolico, A. and Takeda, M., editors, Combinatorial
Pattern Matching, volume 2373 of Lecture Notes in
Computer Science, pages 99–114. Springer Berlin
Heidelberg.
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