
Robust Patient Pseudonym Extraction
during Automatic Calibration in
Low-Cost Photogrammetry

Student Research Project Paper
Benedikt Christoph Wolters

RWTH Aachen University, Germany
Department of Medical Informatics

Advisors:
Prof. Dr. rer. nat. Dipl.-Ing. Thomas Deserno (geb. Lehmann)

Dipl.-Inform. Daniel Haak
M.Sc. Ekaterina Sirazitdinova

Submission Date:
2016-04-04

Abstract

Photographic documentation is frequently performed in longitudinal
clinical trials e.g., to support quantitative wound assessment. Conven-
tional methods typically require specialized expensive calibrated pho-
tographic equipment. The emergence of inexpensive high-resolution
general-purpose cameras in modern smart phones or tablets has paved
the way for novel, more economic, and integrated ways to perform
photographic documentation. However, using low-cost hardware, the
calibration of the photographs now becomes a post-processing step
as it is an essential task to achieve comparability. Additionally, using
Internet-connected consumer equipment such as smart phones enables
the entire documentation process to be embedded onto the consumer
device e.g., through a mobile application. Amongst others, this process
involves a robust patient (re-)identification to prevent documentation
errors. In this paper we will combine the required image calibration
step with a mean to extract the subject’s pseudonym using a special
subject-tailored Macbeth color reference card. Initially, the primary
goal of the card is to serve as a reference for color- and perspective-
corrections of the image. However, equipped with both a textual and a
bar-code representation of the subject’s pseudonym, the card also al-
lows us to apply and combine different approaches of image recognition
to extract the subject’s pseudonym. In this paper we will introduce
different algorithms to robustly localize the Macbeth color reference
card in a medical image. Subsequently, we discuss and evaluate dif-
ferent approaches of fine-tuning and combining different stages of the
algorithms on 208 images. Finally, we conclude the paper with an
outlook and a comparison of our methods.

2

Contents

1 Introduction 5
1.1 Photographic Documentation in Clinical Trials using Smart

Phones . 5
1.2 Combining Color Cards with Subject-Pseudonyms 5
1.3 Related Work . 6
1.4 Outline . 7

2 Background 7
2.1 Macbeth ColorChecker Cards 8
2.2 Bar Codes and EAN-8 . 10
2.3 Optical Character Recognition (OCR) 12
2.4 Deformed Lattice Detection Algorithm 14
2.5 Communication Architecture 15

3 Card Extraction 17
3.1 Outline . 17
3.2 Edgemap Calculation . 18
3.3 Lattice Detection Algorithm 19
3.4 Point Labeling . 20
3.5 Fine Adjustment . 21
3.6 Perspective Transform . 25
3.7 Bar code readout and OCR readout 27
3.8 Algorithm Variants . 27

3.8.1 Different Edgemaps . 27
3.8.2 Variant: Single Pass vs. Double Pass 27
3.8.3 Variant: Full Lattice Detection vs. Phase I only 27
3.8.4 Variant: Alladjust vs. Only Adjust Point Labeling . . 28
3.8.5 Variant: Equidistant Sampling as Baseline 28

4 Experimental Results 29
4.1 Setup and Dataset . 29
4.2 Evaluation Criteria . 29
4.3 Baseline . 30
4.4 Results for Edgemap Variant A 35
4.5 Results for Edgemap Variant B 40
4.6 Summary . 46

3

5 Future Work 47
5.1 Preprocessing of OCR Readouts 47
5.2 Heuristic for Pseudonym Readout 48
5.3 Consideration of Corner Points 48
5.4 Performance Improvements for Point Labeling 48

6 Conclusion 48

4

1 Introduction

1.1 Photographic Documentation in Clinical Trials us-
ing Smart Phones

Longitudinal quantitative monitoring of the development of visible outspread
of a disease, especially a wound or a skin lesion is of essential importance in
clinical trials. For this, photographic documentation plays an important role
in clinical trials especially for objective wound evaluation. However, lack of
standardization in protocol has hindered the wide adoption of a unified docu-
mentation process [1]. Photographic documentation suffers from perspective
distortions due to the use of optical lenses as well as color shifts due to
different illumination and ambiance [2]. Hence current photographic docu-
mentation techniques require high-quality, expensive and special calibrated
hardware [3]. Additionally, calibrating the equipment might be a tedious task
that requires special knowledge. In [1, 4, 5] a imaging processing framework
based on consumer-grade smart phone equipment has been proposed. Instead
of performing the picture calibration before shooting a picture, now the pic-
ture calibration becomes a post-processing step by using a color reference
card. This card both standardized in size measurements as well as colors
can be placed next to the region of interest to be documented in the image.
Using the color card as a reference the image then can be corrected. To in-
crease standardization amongst the images taken in possibly multi-centered
locations by different study nurses a written standard operation procedure
(SOP) is handed to the study nurses, who capture the images. The SOA
describes the parameters and basic conditions of the photograph, positioning
of the reference card and region of interest as well as parameters of the smart
phone camera [1].

1.2 Combining Color Cards with Subject-Pseudonyms

Using only smart phone equipment now the whole documentation process
can be integrated automatically with electronic data capture (EDC) systems
[5]. For this the subject needs to be associated with the image taken.

While the subject’s pseudonym could also be entered manually in the
smart phone app before or after taking the picture there are several reasons
to embed the pseudonym within the image itself and combine this two steps:

• The smart device might already contain multiple very similar images
of different test subjects, which makes it hard for the operator to dis-

5

tinguish different subjects from each other, especially on small screen
sizes, similiar subject’s characteristics or due to the sheer amount of
images.

• The operator might mistype or confuse subject’s pseudonyms, when
entering the subject’s data manually at worst resulting in a wrong
association, or corrupt study data.

• The operator might also aswell enter the subject manually, having the
pseudonym in the image itself can be used for data validation and will
avoid association errors.

• In case of a partial meta data loss (e.g. a corrupt or missing subject-
to-image database association) the pseudonym is still extractable from
the raw images.

• The successful pseudonym extraction can be used as a mean of quality
assurance: If the pseudonym embedded into the image turns out to be
extractable, chances that the image is not unsharp, jittery, blurred or
otherwise unusable in latter analysis are increased. On the other hand
images of poor quality can be automatically declined.

Therefore, in this paper we extend and improve the architecture presented in
[1, 3] by introducing special individual subject-tailored color reference cards
containing the study subject’s pseudonym. In this paper we specifically aim at
(i) locate the color reference card automatically within the image, (ii) extract
the card from the image, and (iii) read the subject’s pseudonym from the
special color reference card.

1.3 Related Work

The use of color cards to perform geometry and color correction was originally
presented in [2]. However, the initial approach requires manual selection of
the color card corners which are then refined using template matching.

A major part of our approach concentrates on the automatic localization
of a special color reference card used for image calibration. Several approaches
have been introduced in the past for the localization of color cards: [6] uses
adaptive thresholding against the RGB color channel in combination with
contour finding with heuristics to filter the color squares, Bianco et al. in
[7] introduced SIFT feature matching, followed by clustering the matched
features to be fed into a pose selection and an appearance validation algo-
rithm. In [1] Deserno et al. leverage SIFT feature matching and Macbeth

6

color cards in medical images to perform perspective transforms in combi-
nation with quantitative assessment of medical images. Brunner et al. in [8]
propose a scan-line based method to fit a known color reference chart. The
authors of [9] describe the extraction of polygonal image regions and ap-
ply a cost function to check their adaption to a color card. [10] uses color
quantization and binarization combined with a refinement step to obtain the
color card values. Finally, in [11] Wang et al. introduce a per-channel feature
extraction with a sliding rectangle in a rough detection step combined by a
more precise fine-adjustment step.

While we acknowledged the existence of a myriad of various approaches
that cover color card detection, to the best of our knowledge none of them
have dealt with extracting additional information from the color card apart
from the sole purpose of image and color calibration. In our context not
only a color value of the color patch is of interest, but also a very precise
localization of the color card to extract the regions of the color card that
contain the subject’s pseudonym. Thus a precise localization of the card’s
geometry is essential for the correct extraction of the subject’s pseudonym.

Hence and due to the fact that our scenario is similarly targeted to clinical
trials, we base our work on Jose el al. [3] which utilizes an algorithm by Park
et al. [12] to detect deformed lattices in real world images, which has proven
to outperform the SIFT approach in [1].

To summarize the goal of this paper is to extend and optimize the work
in [3] both with respect to runtime, robustness, and accuracy. Also we adapt
this approach to a new specialized color reference card containing two repre-
sentations of the study subject’s identifier.

1.4 Outline

The rest of the paper is structured as follows: Section 2 will introduce pre-
liminaries and building blocks of of our architecture. Section 3 describes our
card-detection algorithm as well as various algorithm variants. Subsequently,
in Section 4 we evaluate our algorithm, followed by an outlook in Section
5.Finally, the paper is concluded in Section 6.

2 Background

In the following section we will describe background information and prelim-
inaries needed for the comprehension our card extraction algorithm.

7

2.1 Macbeth ColorChecker Cards

Figure 1: The original Macbeth ColorChecker card

Figure 2: The color card used in this study. It is comprised of a 6x4 color
patch grid, a bar code and a textual representation of the study subject’s
pseudonym

Property Value
Print Resolution 150 ppi (0.17mm/pix)
Height 300 pix (51 mm)
Width 447 pix (76 mm)
Color Patch Height/Width 64 pix (10.84 mm)
Barcode Width 382 pix (64.69 mm)
Barcode Height 18 pix (3.05 mm)
Text Width 148 pix (25.06 mm)
Text Height 30 pix (5.08 mm)

Table 1: Custom color card specifications

8

No. Name Red Green Blue No. Name Red Green Blue
01 Orange 223 121 053 13 Light-Grey 202 203 202
02 Light-Tone 193 145 130 14 Green 075 153 077
03 Light-Red 195 082 097 15 Purple 093 061 104
04 Yellow-Green 162 189 064 16 Yellow 241 201 042
05 Light-Blue 129 128 175 17 Dark-Tone 116 084 073
06 Tree-Green 093 107 069 18 Cyan 000 135 166
07 Blue 066 067 152 19 Orange-Yellow 229 158 048
08 Black 051 052 053 20 Median-Blue 071 090 173
09 Sky-Blue 091 121 156 21 Grey 161 162 163
10 Charcoal 084 085 085 22 Red 172 059 062
11 Blue-Green 097 189 170 23 Dark-Grey 119 120 121
12 White 247 244 243 24 Magenta 190 087 151

Table 2: sRGB color values for custom color card (top left to right)

In our scenario a customized version of the Macbeth ColorChecker Card
[13] is being utilized. The Macbeth ColorChecker Card (depicted in Figure 1)
is an arrangement of 24 squares (color patches) in a 4x6 grid filled with
sample colors. The color patches of the card have been chosen to have spectral
reflectance of as natural objects such as human skin. Furthermore, the matte
painting of the card has been chosen to have consistent appearance under
a variety of lighting conditions and to keep the same color appearance over
time (stableness).

The colors chosen for the card contain six uniform gray color patches, the
six primary colors typically encountered in chemical photographic processes
(red, green, blue, cyan, magenta, and yellow) as well as a collection of approx-
imations of medium light and medium dark human skin, blue sky, the front
of a leaf and a blue chicory flower. Furthermore the card includes a yellow
and an orange similar to the colors of oranges and lemons. The remainder of
colors have been chosen arbitrarily to represent a good mix of colors [13].

Photographs containing the Macbeth ColorChecker Card can be com-
pared to the original card and the card’s specifications and thus allow har-
monization and finally the comparison of different images taken with different
photographic equipment or in different settings.

In our scenario, we have extended and adapted the Macbeth ColorChecker
Card in order to (i) incorporate two representations of the subject’s identifier,
and (ii) rearranged the color patches to increase the color difference between
two pairwise-different neighboring color tiles. The patient’s identifier is an
eight digit numeric number. The patient’s identifier is embedded twice in

9

different encodings on the color reference card. On the one hand this is done
to ensure that both humans as well as machines have a preferable repre-
sentation: The bar code is printed in normal mono space machine letters as
well as in a bar code version. Details of the bar code are described in the
next subsection. On the other hand this redundancy grants additional ro-
bustness in the event that one of the two representations is (partly) occluded
or otherwise illegible e.g., by a finger holding the color reference card. The
adopted Macbeth ColorChecker card is depicted in Figure 2. The adapted
card specifications are summarized in Table 1, while the used colors are listed
in Table 2.

2.2 Bar Codes and EAN-8

In order to obtain a machine-readable representation of the study subject’s
identifier we deployed a bar code to the color card. In general a bar code is a
machine-readable representation of data relating to the object to which it is
attached. Bar codes are widely used in the commercial domain at checkout
counters as well as transportation and have been adopted in the medical field
for example in the domain of medication safety [14,15]. There exists are mul-
titude of different bar code types: There are one dimensional bar codes, where
the data to be recognized is depicted by an alphabet consisting of varying
widths of spacings of parallel lines. Furthermore, there are two-dimensional
encodings that use rectangles, dots, hexagons and other geometric shapes to
encode the data. While bar codes originally were developed to be scanned
by special hardware (known as bar code readers), software applications are
available that allow the processing of bar codes within devices that simply
take an image of the bar code such as smart phones.

We evaluated different one dimensional bar codes for the use within
our setup under the aspects of (i) robustness against errors, (ii) required
size/space, (iii) available open-source bar code reader software. We found
the one dimensional bar code EAN-8 to be fitting due to its wide usage in
commercial domain as well as adoption in software scanners and it support
for checksums. The EAN-8 bar code is a derivation from the longer Euro-
pean Article Number (EAN-13) code. Both bar codes are standardized in
ISO/IEC 15420:2009 [16]. The purpose of introducing EAN-8 was for use
on small packages where an EAN-13 bar code would not fit; for example on
cigarettes, pencils, or chewing gum packets. The encoding is almost identi-
cally to the 12 digits of the UPC-A bar code.

EAN-8 bar codes may originally be used to encode GTIN-8s which is a
set of product identifiers from the GS1 System. The GTIN-8 begins with a
2- or 3-digit GS1 prefix (which is assigned to each national GS1 authority) 5-

10

or 4-digit item reference element depending on the length of the GS1 prefix),
and finally a checksum digit.

The GS1 authority ensures the international standardization of product
identifiers. However, if companies want to use the bar code to encode own-
brand products sold only in their stores, they may use a RCN-8s (8-digit
Restricted Circulation Numbers) which is of the pattern 02xx xxxx, 04xx
xxxx or 2xxx xxxx, where x is a placeholder for arbitrary values that are
assigned internally.

The construction of the EAN-8 bar code is straight-forward. The code is
comprised of 8 digits. The resulting bar code is structured into a left part of
4 digits and a right part of 4 digits. The left part and the right part have
different alphabets as shown in Table 3.

First group of 4 digits Last group of 4 digits
LLLL RRRR

Alphabet used for L part Alphabet used for R part

Table 3: Structure and alphabet of EAN-8 encoding

The alphabet for each digit can also be described using a bit representa-
tion, where 1 denotes a black line and 0 a white line (cf. Table 4). Note that
the R code is the bitwise-complement of the L code and vice versa.

The checksum calculation of EAN-8 is also very straightforward. The code
has 7 data digits %i, i ∈ 1 . . . 7 and one checksum digit %8 Each of the positions
of the number to be encoded i ∈ 1 . . . 7 is assigned a weight ωi. The weight
is then multiplied with the data digit %i at position i. Finally, the checksum
digit is then calculated by

%8 = 10−
7∑
1

ωi%i mod 10.

The weights ωi as well as an example are depicted in Table 5.
Several programming libraries exist to read a given EAN-8 bar code from

an image. In this project we chose the Java-based Zebra Crossing (ZXing)

11

Digit L-code R-code
0 0001101 1110010
1 0011001 1100110
2 0010011 1101100
3 0111101 1000010
4 0100011 1011100
5 0110001 1001110
6 0101111 1010000
7 0111011 1000100
8 0110111 1001000
9 0001011 1110100

Table 4: EAN-8 L- and R-code alphabet as bitwise-representation

Position i 1 2 3 4 5 6 7
Weight ωi 3 1 3 1 3 1 3
Example Code %i 2 5 9 3 0 0 0

Example Checksum
ω8 = 10− ((2 · 3 + 5 · 1 + 9 · 3 + 3 · 1 + 0 · 3 + 0 · 1 + 0 · 3) mod 10)

= 10− (41 mod 10)

= 9

Table 5: EAN-8 positional weights and example calculation of an EAN-8
checksum

[17] due to its widespread use, speed, and available support. A in-depth
description of the algorithm to read a bar code from a captured image exceeds
the scope of this paper. However, Algorithm 1 gives a concise description of
the algorithm that is being used in our scenario.

2.3 Optical Character Recognition (OCR)

Optical character recognition (OCR) is the electronic conversion of images
of printed text into machine-encoded text. OCR has been widely used as
a form of data entry from printed paper data records, such as bank state-
ments, or computerized receipts. OCR is an active field of research in pattern
recognition, artificial intelligence and computer vision.

OCR accuracy can be increased if the output is constrained by a lexicon
– a list of words that are allowed to occur in a document. This might be, for
example, all the words in the English language, or a more technical lexicon for
a specific field. This technique can be problematic if the document contains

12

Algorithm 1 Generic 1D-Bar Code Reader Algorithm

(1) Load the RGB Image and convert it to greyscale

(2) Convert the RGB Image to Greyscale

(3) Binarize the image using a global histogram approach

(4) Compute two 2D-points in the image based on some heurstic

(5) Trace the binary path between both points

(6) Scale the measured binary path interval down to a fixed length interval

(7) Perform pattern matching to the given reference bar code alphabet

(8) Check if checksum is correct and if yes output mapped code,
otherwise compute another set of points using the heuristic and continue
with (5) (or abort)

words not in the lexicon, like proper nouns. However, in our scenario the
input is only comprised of numerical letters and a dot sign.

In the hope to further assist the accuracy of the OCR tools the OCR-A is
a being utilized on the Color Checker Card. This font arose in the early days
of computer optical character recognition when there was a need for a font
that could be recognized not only by the computers of that day, but also by
humans. OCR-A uses simple, thick strokes to form recognizable characters.
The OCR-A font is monospaced i.e. each character has a fixed fixed-width.

In this project we use a combination of the following three OCR reader:

• Tesseract [18] is a OCR library originally written at Hewlett-Packard
between 1985 and 1995. After Hewlett-Packard abandoned the OCR
market the code was adopted by Google and was put under open-
source. Tesseract is highly configurable, supports over 100 languages
including Arabic and Hebrew.

• Ocrad [19] is an optical character recognition program, and part of the
GNU Project. It is free software, and is licensed under the GNU GPL.
It has been in development since 2003. It is based on character feature
extraction.

• Our image processing and evaluation framework uses Matlab. The
Computer Vision Toolbox of Matlab features an OCR Reader [20]

13

that we also use.

2.4 Deformed Lattice Detection Algorithm

An essential building block of our card extraction algorithm is the deformed
lattice detection algorithm proposed by Park et al. [12]. The algorithm’s
purpose is to find anchor points in near-regular patterns that are found nature
in an digital image.

Figure 3: Flowchart of the phases of the proposed algorithm by Park et al.
[12]

The algorithm is comprised in three phases as depicted in Figure 3. In
the following we summarize the phases of the lattice detection algorithm:

Phase I: Lattice Model Proposal This phase can be described as a dis-
covery process to find a lattice proposal. The phase start with an input
image I, and outputs a lattice proposal consisting of a vector pair (t1, t2)
of two linear independent vectors, a initial texel estimate (a texel is a
set of points belonging to a lattice) and an appearance template T0.
The input image is subdivided into blocks of size 50x50 pixel. On each
of the partitions the KLT corner extractor [12] is invoked and yields a
candidate interest point set of 2D coordinates of at most Ns = 30 per
50x50 pixel partition. The final set of all feature points is called Sklt. For
each of the interest points a centered region of 11x11 pixel is considered
and all points in this set are clustered using Mean-Shift Clustering by
their regional template similarity. Having the interest points clustered
into different groups, then a voting mechanism (RANSAC) is used to
find a generator pair for a lattice pattern (t1, t2): For each clustered
group three points {a, b, c} are sampled, where a is chosen at random
and b and c are chosen as the closest points in the vicinity to a. An
affine transformation t is computed that maps {a, b, c} to the lattice
basis {(0, 0) , (1, 0) , (0, 1)}. The remainder of the points in the clustered
group is subsequently transformed to lattice space using this transform

14

t and the number of points which are within a given threshold to a
position in lattice space (i, j), i, j ∈ N is counted/voted. These points
are called inlier. The random selection of the three points is repeated
multiple times and the (t1, t2) vector pair with the highest number of
counts is chosen as the lattice generator. Thus the output is the best
(t1, t2) pair, the inlier as a texel estimate (a set of 2D points), and the
template T0 which centered at the point spanning t1, and t2.

Phase II: Lattice Expansion Since the lattice present in the image to
detect may be geometrically distorted it cannot be assumed that Phase
I will detect the entire lattice. Therefore an initial small seed lattice is
predicted, refined, and gradually developed into into a larger and larger
lattice, while the image is progressively unwarped (Phase III) to remove
geometric deformations.

Details of this Phase are beyond the the scope of this paper. How-
ever, a Markov Random Field (MRF) model is being utilized here to
infer further lattic texel locations. This model both incorporates spa-
tial constraints (dependence on t1, t2 generator of lattice points) as well
as image similarity (T0). The inference process is realized using Mean
Shift Belief Propagation.

Phase III: Regularized Thin-Plate Spline Warping After Phase II has
inferred some further points of the lattice, the found lattice related to
its regular origin. This is done by an unwarping step using regularized
thin-plate spline warping [12]. This phase is ensures the stability of the
lattice model throughout the entire iterative procedure of alternating
Phase II and III until no more lattice points can be developed. Phase
II and III are executed unless no more texels are found.

An example of the lattice detection algorithm is shown in Figure 4.

2.5 Communication Architecture

In this section we will elucidate the framework in which our card extraction
algorithm is run. Our algorithm is comprised of several building blocks and
operates in a pipelined manner.

The communication architecture (depicted in Figure 5) follows a star
topology where a central component is the communication server. In our
framework the communication server implements the mediator pattern: The
mobile phone is connected to the communication server and invokes a certain
workflow. In our scenario the workflow is the execution of multiple execution

15

Figure 4: Steps of the Lattice Detection Algorithm: (a) the input image, (b)
the lattice proposal after Phase I, (c) the partially developed lattice (note
that the image is warped) after some iterations of Phase II/III, (d) the final
lattice [12]

Workflow: Pseudonymextraction

Preprocessing

Point Identification

Inverse Transform

…

OCR

Communication Server

Invokes Workflow
Pseudonymextraction

OCR-Result:
03-15-0054

Image Processing Server 1
(Technology: ImageJ)

Image Processing Server 2
(Technology: MATLAB)

Smart Phone

Figure 5: The communication server acts as a mediator between the request-
ing entity (smart phone) and the workflow specific worker servers (e.g., Image
Processing Servers)

steps in image processing and computer vision. The communication server
schedules and takes care of the execution of steps in the workflow on dedi-
cated execution servers (image processing servers). One the one hand those
execution servers can run different technology stacks or operating systems
(Windows/Linux,MATLAB/ImageJ/...), on the other hand the centralized

16

communication server can perform agnostic failure handling as well as load
balacing. A workflow can be thought of as a recipe to perform a certain goal.
The specification of a workflow includes the specification of the required pa-
rameters that are needed to be passed to the execution server, such that
the single workflow step can be executed. Furthermore, the communication
server can identify workflow items that can be executed in parallel. A single
step in the workflow could be the execution of a single pipeline step in our
algorithm. For example, a single workflow item in our scenario is the

(i) resizing of an input image to a fixed width/height,

(ii) the calculation of an edgemap,

(iii) an invocation of the aforementioned lattice detection algorithm,

(iv) the invocation of the card extraction algorithm,

(v) the invocation of an OCR software,

(vi) the invocation of a bar code reader algorithm,

(vii) post processing and validation of OCR and bar code readout, or

(viii) the subsequent image calibration.

Therefore, we obtain the freedom to be technology independent as long as
there is a technology-specific binding implemented between the execution
server and the communication server. Additionally, the potentially resource
constrained client of the communication server (e.g.,the mobile phone) is not
bothered with the complex inner-workings of the underlying infrastructure.

3 Card Extraction

In this section we will describe our proposed card extraction algorithm.

3.1 Outline

The input parameters of our algorithm is a RGB image IRGB of arbitrary
resolution (we assume the image is larger than 1000x1000 pixel) containing
a color reference card. The output of the algorithm are the either the bar
code/ocr readouts or an error indication if the algorithm was unable to either
detect the card or some step (e.g., the barcode reader) encontered an error
condition.

17

3.2 Edgemap Calculation

The first phase of the algorithm is a preprocessing step for the subsequent
lattice detection phase. The goal of this phase is to emphasize the edges of
the color checker card placed within the image as a good starting point for
the lattice detection. Simultaneously, in this phase we resize the image obtain
a smaller input image in the subsequent lattice detection phase.

We propose two variants of the edgemap calculation, which are heuristic
approaches to yield an image that contains good contour traces of the color
card patches. Both variants differ in their level of blurriness (c.f. Figure 6).

(a) Resized RGB Image (b) Variant A (c) Variant B

Figure 6: Original image (a) and different edgemap variants (b-c)

Variant A

Given a maximum size δmax, a blur strength δblur the steps of the edgemap
calculation phase are as follows:

1. Resize the IRGB to I ′RGB such that the height/width of I ′RGB are bounded
by 2δmax.

2. Transform the I ′RGB to a greyscale image I ′grey.

3. Compute and normalize the Prewitt gradient operator ggrey magnitude
for I ′grey. Also compute the same operator gc, c ∈ {R,G,B} for each of
the RGB color channels of I ′RGB separately.

4. Compute the edgemap E image as follows:
E(i, j) = max(ggrey(i, j),

gR(i, j), gG(i, j), gB(i, j),
2gB(i,j)+gG(i,j)

3 , 2gR(i,j)+gB(i,j)
3 , 2gG(i,j)+gR(i,j)

3), E(i, j) ¬ 1
.

5. Resize E to E ′ such that the height/width of E ′ are bounded by δmax.

6. Finally, perform a Gaussian blur of strength δblur on the final edgemap
E ′′.

18

Variant B

Variant B follows is almost the same procedure as in Variant A. However,
here we introduce another Gaussian blur of strength δblur2 after step 1. The
following gradient operators (Step 2 and following) are then computed on
this blurred image instead of the resized original image.

3.3 Lattice Detection Algorithm

Having computed the edgemap in the previous phase we invoke the lattice
detection algorithm of Park et al. [12] on the resulting edgemap image E ′′.
The lattice detection algorithm yields a point cloud of of 2D-coordinates of
the grid points. In our scenario we expect the grid points to be the color card
coordinates due to the specific nature of our edgemap. Since the edgemap
input image was calculated on a resized image, we upscale coordinates and
obtain the set L of the lattice coordinates in our original image. However,
the lattice detection algorithm only gives a coarse and potential incomplete
list of grid points in the image (cf. Figure 7).

Figure 7: Result of the Lattice Detection algorithm. Lattice Points (red) on a
grid (yellow) were detected. The detected points may be coarse, not complete,
or incorrect.

19

3.4 Point Labeling

Due to rotation and perspective distortions the sole knowledge of some point
coordinates within the card is not sufficient to identify the regions for the
card patches. First, as previously stated, the list L of lattice coordinates
might be incomplete or contains false positives. Secondly, the points are not
yet associated to the card’s topology.
In order to obtain a mapping of the points to the card’s topology and to
filter out false positives, we compute a feature vector for each of the points
in L. The feature vector should incorporates the color information of the
neighboring color patches as shown in Figure 8.

P Q

RS

M

Figure 8: The feature vector is computed using the averaged color of four
points within the quadratic surrounding of the point M.

First we compute the average distance d for each point to the closest
neighboring point:

α =
∑
i∈Lminj∈L,i 6=j {‖i− j‖2}

|L|
.

We can then define a offset o and a region size u as follows:

γ = max(30,
d

2
),

β = max(3,

√
d

4
)

Now given a point M = (m1,m2) ∈ L, we then compute four points p, q, r, s
in rectangular neighborhood of S such that:

p(m1,m2) = (m1 − γ,m2 − γ)

20

q(m1,m2) = (m1 + γ,m2 − γ)

r(m1,m2) = (m1 + γ,m2 + γ)

s(m1,m2) = (m1 − γ,m2 + γ)

For i ∈ {p, q, r, s} we compute the mean RGB values (Ri, Gi, Bi) as well
as Ai = Ri + Gi + Bi within the neighboring region of i spanning β pixels.
Finally, we can compute the feature C vector for M . We abbreviate p for
p(m1,m2) here etc.:

C(m1,m2) = (Rp/Ap, Gp/Ap, Bp/Ap,
Rq/Aq, Gq/Aq, Bq/Aq,
Rr/Ar, Gr/Ar, Br/Ar,
Rs/As, Gs/As, Bs/As)

Knowing the RGB values for our color checker card we can also compute
the same feature vector for fixed points L′ between color patches in our color
checker card. Subsequently, we can then compute a mapping between L and
L′ using our feature vector. For each point in l′ ∈ L′ we compute a mapping
m : L′ → L that minimizes the Euclidian distance between the two obtained
feature vectors. In order to be able to handle rotations of the card, we repeat
the computation of the feature vector and shift the computation of the points
p, q, r, s by 90, 180, and 270 degree. Finally, we choose the mapping which
has the least accumulated error amongst all rotations (cf. 9).

This mapping yields to a labeling of lattice points detected in the image
to inner grid points of the points of the color card. However, this mapping
can still be erroneous for some points i.e. some points within the lattice are
assigned to wrong topology points of the card. Moreover, as seen in 9 due
to the design of the lattice detection algorithm, the obtained points may not
perfectly resemble the intersections of neighboring color patches.

3.5 Fine Adjustment

In order to obtain a more accurate match of the intersections, we propose a
fine adjustment step that compensates the inaccuracies of the lattice detec-
tion. The overall assumption here is that the point labeling step has already
chosen points that are present at such a intersection but that are affected
by an error i.e. the real intersection is in a certain vicinity from the original
point. Our approach is derived from Wang et al. [11] but was adapted to our
scenario.

The idea here, again, is to only consider the surrounding region of the
point under examination: We again use the same points that were previously

21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Figure 9: The feature vector is computed for all lattice points and matched
to known feature vectors of the inner color patches of the color checker card’s
specification

used to compute the feature vector (see subsection 3.4), but now we consider
color gradient amongst a line between two of those points at the regions
boundary. Our observation is that the intersection point is always on a black
line between two color levels.

In the following to simplify we focus on the one dimensional case for one
color level. In reality, we deal with three color levels and two dimensions.

For two given discrete one dimensional points at position l and r,l < r,
let Cl and Cr denote their color intensity level.

For discrete points between l and r at discrete position i we define:

d(i) = min(|Ci − Cl|, |Ci − Cr|)

Additionally, we define the color derivative as follows:

∆d(i) =

0 i = l

|d(i− 1)− d(i)| otherwise

That means ∆d(i) denotes the absolute change in color. Because we assume
that the color changes from one color level to another, we can approximate

22

Image

50 100

50

100

blurred image

50 100

50

100

0 50 100
0

100

200

300
Color Gradient: top

0 50 100
0

100

200

300
Color Gradient: bottom

Color Derivative

Red Channel

Green Channel

Blue Channel

Equilibrium

0 50 100
0

100

200

300
Color Gradient: left

0 50 100
0

100

200

300
Color Gradient: right

Final Intersection

0 50 100

50

100

Figure 10: Example of a single fine adjustment step. Based on an initial
starting point (red), we consider an excerpt from the image and blur it.Then
the color derivatives are calculated for the outermost top/bottom/left and
right segments of this excerpt, which yields to an approximation for the
intersection point (green)

the intersection point c with the following equitation:∫ c
l

∆d(x)dx ≈
∫ r
c

∆d(x)dx

23

We extend this approach to incorporate all three color channels in our
scenario by computing the color derivatives for each color channel separately
and finally adding up their color derivatives. The intersection point is then
computed over the accumulated color derivative.

Using this method we obtain an approximate location for center of a
black line, when drawing a line between two color patches. We can now
apply this method to find out the position of the black color line at the top,
the bottom, left and right of the point of interest (cf. Figure 10). Having
those four positions, we can compute a linear intersection, which is our final
fine adjustment. It is noteworthy that since the computation for each point is
independent of one another, the fine adjustment computation for each point
can be computed in parallel.

Figure 11: Result after Fine Adjustment step, the green points are now cen-
tered at the intersections

24

3.6 Perspective Transform

After we have filtered, labeled and fine-adjusted the detected lattice points
the next goal is to perform a perspective transform on the image such that the
perspective distortion of the card in the image plane removed. Traditionally,
four points suffice to calculate a perspective transform. However, the point
labeling step may labeled some points wrong. Furthermore, even after the
fine-adjustment step there might be some points that do not perfectly fit. Also
since we do have more than four points we want to pick the best combination
of those to ensure a very precise perspective transformation.

To do this we use the M-estimator SAmple Consensus (MSAC) algorithm,
which is a variant of the Random Sample Consensus (RANSAC) algorithm.

Given a distance threshold d, a set of fine-tuned lattice coordinates L,
a set of coordinates on the actual card L′ and a point labeling mapping
m : L→ L′, the steps of the MSAC algorithm are as follows:

1. From the set of fine-tuned lattice coordinates L pick a set of four points
S ⊆ L at random and compute a perspective transformation T of those
points to their labeled card coordinates.

2. From each of the remaining points p ∈ L \ S of the set of fine-tuned
lattice coordinates that have not been used in the previous transform
yet, compute the projection of the transformation T (p). If the distance
between the transformation result and coordinates of the mapping of
the point is less than the threshold d, than include this point into a
Consensus Set C, otherwise this point is discarded out as an outlier.

3. Evaluate the current found transform i.e.: c =
∑
i∈L p(i), where

p(i) =

‖T (i)−m(i)‖2 if ‖T (i)−m(i)‖2 ¬ d

k otherwise, where k � d is a constant

If the current c is smaller than the best previous c we take the save the
current transform T as the current best transform Tbest.

4. Repeat steps 1 - 3 until the number of iterations n exceeds the following
inequality:

n >
log (1− p)

log
(
1− (1− ε)4

)
where p is the confidence level to include all inliers and ε is an esti-
mate of the relative amount of outliers in the given data set. Since ε is

25

unknown, ε can be estimated on-the-fly with:

ε ≈
(
|C|
|L|

)4

5. For the final transformation compute a final perspective transform Tfinal

using all inliers of the best consensus set C by using the least square
fitting approach.

Finally, we after having obtained Tfinal, we can apply the transformation to
the input image and obtain an image where the color checker cards coordi-
nates are normalized an example of a perspective transform is depicted in
Figure 12 and Figure 13.

Points used as inlier for perspective transform

Lattice points in original image
Transformed points

Figure 12: Image before and after computing the perspective transform. All
lattice coordinates are used as inliers.

Points used as inlier for perspective transform

Lattice points in original image
Transformed points

Figure 13: Image before and after computing the perspective transform Only
some lattice coordinates are used for the transform.

26

3.7 Bar code readout and OCR readout

Having the image perspectively transformed we are able to segment the parts
of the image where the bar code and the textual representation of the study
subject’s identifier is located, since we know the positions of the respective
areas from the color cards specifications. This allows us to invoke a bar code
reader on the extracted bar code patch as well as OCR readers on the text
patch.

3.8 Algorithm Variants

In the previous section we described the basic building blocks of our algo-
rithm. However we have implemented and evaluated several variants of the
algorithm that we summarize in this section.

3.8.1 Different Edgemaps

As already described in subsection 3.2 we implemented two different ver-
sions of the edgemap, which is being used as a starting point for the lattice
detection algorithm.

3.8.2 Variant: Single Pass vs. Double Pass

Apart from using different edgemap another variant that we propose is per-
forming the perspective transform and the preceded fine-tuning step twice
or not. That means in the Single Pass variant there is only one iteration of
point labeling, followed by a fine adjustment step and finally the perspec-
tive transform is computed, while in the Double Pass variant we perform
an additional second perspective transform on the basis of the result of the
first transformation. That means after we have performed the first perspec-
tive transformation we invoke the fine adjustment again on the transformed
coordinates and calculate a second perspective transform as described in sub-
section 3.6. The doubly transformed image is then used for OCR/Bar code
recognition.

3.8.3 Variant: Full Lattice Detection vs. Phase I only

During our evaluation we observed that the a large portion of the overall
runtime of our algorithm is spend in the lattice detection algorithm. More-
over, the most expensive part of the lattice detection algorithm are Phases
II and III. In the Full Lattice Detection variant we invoke the entire lattice
detection.

27

(a) Result after Phase I (b) Fully developed Lattice

Figure 14: The points including different lattice proposals (a) and a fully
developed lattice (b).

An example of the differences between the results after Phase I and the
final Lattice is depicted in Figure 14.

However, we observed that the initial lattice candidate already yields a
good estimate and due to this in the in the Phase I only variant we stop the
lattice detection algorithm after Phase I and use the lattice candidate set as
an direct input for the subsequent point labeling algorithm instead of fully
developing the entire lattice.

3.8.4 Variant: Alladjust vs. Only Adjust Point Labeling

In the previously Phase I only variant, we furthermore distinguish between
the Alladjust and Only Adjust Point Labeling variant. The former is invoking
the fine adjustment before labeling the points. The latter is only performing
the fine adjustment after labeling the points.

3.8.5 Variant: Equidistant Sampling as Baseline

In order to examine the significance of the effect of the lattice detection
algorithm, we also implemented a baseline variant where instead of obtaining
the points from the lattice detection algorithm we used a systematic uniform
sampling approach. That means we choose equidistant sampling points across
the entire height/width of the image and perform fine adjustment on each of
this points and then perform point labeling (see Figure 15).

28

Figure 15: Equidistant Variant without lattice detection: Uniform equidistant
samples across the entire length of the image. First the fine adjustment step
is applied and then the point labelling is performed

4 Experimental Results

4.1 Setup and Dataset

The following results were performed on a total of 208 images. All images
have been taken by the same photographer using different motives, arbitrary
card rotations and arbitrary camera-to-card distances. The camera in use
was a Samsung Galaxy K with a resolution of 5184x2916 pixel. This set
has not been preprocessed or filtered in any kind, and contains some images
that are too unsharp, jittery or blurred to detect the bar code of the card
properly. Also in some images the card to be detected is semi-covered. All
images contain a card. The algorithm was executed on a Lenovo ThinkPad
W510 with an Intel Core i7 820QM Quad Core Processor and 12GB of main
memory.

4.2 Evaluation Criteria

Our evaluation considers the overall runtime of the proposed variants. Fur-
thermore, we use the readout success to evaluate accurracy of the approaches
under consideration. We obtain ground-truth by always using the same card
in every picture containing the same identifier code.

29

4.3 Baseline

We use the equidistant sampling approach as a baseline to determine worst-
case runtime as well as a baseline success rate. We vary the amount of samples
taken from one sample per 250 pixel (=̂ 241 samples) up to one sample per
100 pixel (=̂ 1510 samples). The runtime is depicted in Figure 16. Further-

20

40

60

80

100

120

140

160

180

R
un

tim
e

[s
]

Runtime Card Extraction

B
aseline

S
am

ple per 100 px

B
aseline

S
am

ple per 125 px

B
aseline

S
am

ple per 150 px

B
aseline

S
am

ple per 175 px

B
aseline

S
am

ple per 200 px

B
aseline

S
am

ple per 250 px

Figure 16: Total runtime for different baseline variants

more, we summarize the readout success for the different baseline variants in
Figure 17.

30

0

50

100

150

200

N
um

be
r

of
 r

ec
og

ni
ze

d
ba

rc
od

es

Barcode Readout Success

B
aseline

S
am

ple per 100 px

B
aseline

S
am

ple per 125 px

B
aseline

S
am

ple per 150 px

B
aseline

S
am

ple per 175 px

B
aseline

S
am

ple per 200 px

B
aseline

S
am

ple per 250 px

Figure 17: Barcode Readout Success for different baseline variant

0

50

100

150

200

N
um

be
r

of
 r

ec
og

ni
ze

d
te

xt
s

OCR Readout Success
MATLAB OCR Engine

B
aseline

S
am

ple per 100 px

B
aseline

S
am

ple per 125 px

B
aseline

S
am

ple per 150 px

B
aseline

S
am

ple per 175 px

B
aseline

S
am

ple per 200 px

B
aseline

S
am

ple per 250 px

(a) Matlab

0

50

100

150

200

N
um

be
r

of
 r

ec
og

ni
ze

d
te

xt
s

OCR Readout Success
OCRAD OCR Engine

B
aseline

S
am

ple per 100 px

B
aseline

S
am

ple per 125 px

B
aseline

S
am

ple per 150 px

B
aseline

S
am

ple per 175 px

B
aseline

S
am

ple per 200 px

B
aseline

S
am

ple per 250 px

(b) OCRAD

0

50

100

150

200

N
um

be
r

of
 r

ec
og

ni
ze

d
te

xt
s

OCR Readout Success
Tesseract OCR Engine

B
aseline

S
am

ple per 100 px

B
aseline

S
am

ple per 125 px

B
aseline

S
am

ple per 150 px

B
aseline

S
am

ple per 175 px

B
aseline

S
am

ple per 200 px

B
aseline

S
am

ple per 250 px

(c) Tesseract

Figure 18

31

0

50

100

150

N
um

be
r

of
 r

ec
og

ni
ze

d
te

xt
s

Readout Success
Matlab OCR Reader Edit Distance

B
aseline

S
am

ple per 100 px

B
aseline

S
am

ple per 125 px

B
aseline

S
am

ple per 150 px

B
aseline

S
am

ple per 175 px

B
aseline

S
am

ple per 200 px

B
aseline

S
am

ple per 250 px

Identical
Edit Distance 1
Edit Distance 2
Edit Distance 3
Edit Distance 4
Edit Distance > 4
No readout

Figure 19

0

50

100

150

N
um

be
r

of
 r

ec
og

ni
ze

d
te

xt
s

Readout Success
OCRAD OCR Reader Edit Distance

B
aseline

S
am

ple per 100 px

B
aseline

S
am

ple per 125 px

B
aseline

S
am

ple per 150 px

B
aseline

S
am

ple per 175 px

B
aseline

S
am

ple per 200 px

B
aseline

S
am

ple per 250 px

Identical
Edit Distance 1
Edit Distance 2
Edit Distance 3
Edit Distance 4
Edit Distance > 4
No readout

Figure 20

32

0

50

100

150

N
um

be
r

of
 r

ec
og

ni
ze

d
te

xt
s

Readout Success
Tesseract OCR Reader Edit Distance

B
aseline

S
am

ple per 100 px

B
aseline

S
am

ple per 125 px

B
aseline

S
am

ple per 150 px

B
aseline

S
am

ple per 175 px

B
aseline

S
am

ple per 200 px

B
aseline

S
am

ple per 250 px

Identical
Edit Distance 1
Edit Distance 2
Edit Distance 3
Edit Distance 4
Edit Distance > 4
No readout

Figure 21

0

50

100

150

200

N
um

be
r

of
 r

ec
og

ni
ze

d
te

xt
s

OCR Readout Success
Combined OCR

B
aseline

S
am

ple per 100 px

B
aseline

S
am

ple per 125 px

B
aseline

S
am

ple per 150 px

B
aseline

S
am

ple per 175 px

B
aseline

S
am

ple per 200 px

B
aseline

S
am

ple per 250 px

(a) All OCR Readers

0

50

100

150

200

N
um

be
r

of
 r

ec
og

ni
ze

d
ca

rd
s

Readout Success
OCR OR barcode correct

B
aseline

S
am

ple per 100 px

B
aseline

S
am

ple per 125 px

B
aseline

S
am

ple per 150 px

B
aseline

S
am

ple per 175 px

B
aseline

S
am

ple per 200 px

B
aseline

S
am

ple per 250 px

(b) OCR OR Bar Code

0

50

100

150

200

N
um

be
r

of
 r

ec
og

ni
ze

d
ca

rd
s

Readout Success
OCR AND barcode correct

B
aseline

S
am

ple per 100 px

B
aseline

S
am

ple per 125 px

B
aseline

S
am

ple per 150 px

B
aseline

S
am

ple per 175 px

B
aseline

S
am

ple per 200 px

B
aseline

S
am

ple per 250 px

(c) OCR AND Bar Code

Figure 22

33

Summary

We observe that in general the bar code readout is much more robust than
the OCR readout. In the best case the our baseline approach detects the bar
code in 184 out of 208 images (=̂88%) at the expense of a long runtime. If
we reduce the number of samples to obtain a reasonable runtime the number
of recognized bar codes as well as the OCR readout success rate drops. Note
that all baseline variants take longer than 20 seconds.

34

4.4 Results for Edgemap Variant A

In this section we present the evaluation results for our algorithm variant
using the lattice detection algorithm and using an edgemap type of Variant
A (see subsection 3.2).

Timing

We measure the total runtime of the algorithmic variants per image (Runtime
Total). The total runtime consists of the runtime of the lattice detection
algorithm and the card-extraction algorithm. When only using the Phase I
of the lattice detection algorithm the runtime decreases significantly.

0

20

40

60

80

100

120

R
un

tim
e

[s
]

Runtime Total

S
ingle P

ass A
lladjust

P
haseI only

D
ouble P

ass A
lladjust

P
haseI only

S
ingle P

ass
P

haseI only

D
ouble P

ass
P

haseI only

S
ingle P

ass
Lattice D

etection

D
ouble P

ass
Lattice D

etection

Figure 23

35

4

6

8

10

12

14

16

R
un

tim
e

[s
]

Runtime Card Extraction

S
ingle P

ass A
lladjust

P
haseI only

D
ouble P

ass A
lladjust

P
haseI only

S
ingle P

ass
P

haseI only

D
ouble P

ass
P

haseI only

S
ingle P

ass
Lattice D

etection

D
ouble P

ass
Lattice D

etection

Figure 24

36

0

10

20

30

40

50

60

70

80

R
un

tim
e

[s
]

Runtime Lattice Detection

S
ingle P

ass A
lladjust

P
haseI only

D
ouble P

ass A
lladjust

P
haseI only

S
ingle P

ass
P

haseI only

D
ouble P

ass
P

haseI only

S
ingle P

ass
Lattice D

etection

D
ouble P

ass
Lattice D

etection

Figure 25

37

Readout Success

0

50

100

150

200

N
um

be
r

of
 r

ec
og

ni
ze

d
ba

rc
od

es

Barcode Readout Success

S
ingle P

ass A
lladjust

P
haseI only

D
ouble P

ass A
lladjust

P
haseI only

S
ingle P

ass
P

haseI only

D
ouble P

ass
P

haseI only

S
ingle P

ass
Lattice D

etection

D
ouble P

ass
Lattice D

etection

Figure 26

0

50

100

150

200

N
um

be
r

of
 r

ec
og

ni
ze

d
te

xt
s

OCR Readout Success
MATLAB OCR Engine

S
ingle P

ass A
lladjust

P
haseI only

D
ouble P

ass A
lladjust

P
haseI only

S
ingle P

ass
P

haseI only

D
ouble P

ass
P

haseI only

S
ingle P

ass
Lattice D

etection

D
ouble P

ass
Lattice D

etection

(a) Matlab

0

50

100

150

200

N
um

be
r

of
 r

ec
og

ni
ze

d
te

xt
s

OCR Readout Success
OCRAD OCR Engine

S
ingle P

ass A
lladjust

P
haseI only

D
ouble P

ass A
lladjust

P
haseI only

S
ingle P

ass
P

haseI only

D
ouble P

ass
P

haseI only

S
ingle P

ass
Lattice D

etection

D
ouble P

ass
Lattice D

etection

(b) OCRAD

0

50

100

150

200

N
um

be
r

of
 r

ec
og

ni
ze

d
te

xt
s

OCR Readout Success
Tesseract OCR Engine

S
ingle P

ass A
lladjust

P
haseI only

D
ouble P

ass A
lladjust

P
haseI only

S
ingle P

ass
P

haseI only

D
ouble P

ass
P

haseI only

S
ingle P

ass
Lattice D

etection

D
ouble P

ass
Lattice D

etection

(c) Tesseract

Figure 27

38

0

50

100

150

N
um

be
r

of
 r

ec
og

ni
ze

d
te

xt
s

Readout Success
Matlab OCR Reader Edit Distance

S
ingle P

ass A
lladjust

P
haseI only

D
ouble P

ass A
lladjust

P
haseI only

S
ingle P

ass
P

haseI only

D
ouble P

ass
P

haseI only

S
ingle P

ass
Lattice D

etection

D
ouble P

ass
Lattice D

etection

Identical
Edit Distance 1
Edit Distance 2
Edit Distance 3
Edit Distance 4
Edit Distance > 4
No readout

Figure 28

0

50

100

150

N
um

be
r

of
 r

ec
og

ni
ze

d
te

xt
s

Readout Success
OCRAD OCR Reader Edit Distance

S
ingle P

ass A
lladjust

P
haseI only

D
ouble P

ass A
lladjust

P
haseI only

S
ingle P

ass
P

haseI only

D
ouble P

ass
P

haseI only

S
ingle P

ass
Lattice D

etection

D
ouble P

ass
Lattice D

etection

Identical
Edit Distance 1
Edit Distance 2
Edit Distance 3
Edit Distance 4
Edit Distance > 4
No readout

Figure 29

39

0

50

100

150
N

um
be

r
of

 r
ec

og
ni

ze
d

te
xt

s

Readout Success
Tesseract OCR Reader Edit Distance

S
ingle P

ass A
lladjust

P
haseI only

D
ouble P

ass A
lladjust

P
haseI only

S
ingle P

ass
P

haseI only

D
ouble P

ass
P

haseI only

S
ingle P

ass
Lattice D

etection

D
ouble P

ass
Lattice D

etection

Identical
Edit Distance 1
Edit Distance 2
Edit Distance 3
Edit Distance 4
Edit Distance > 4
No readout

Figure 30

0

50

100

150

200

N
um

be
r

of
 r

ec
og

ni
ze

d
te

xt
s

OCR Readout Success
Combined OCR

S
ingle P

ass A
lladjust

P
haseI only

D
ouble P

ass A
lladjust

P
haseI only

S
ingle P

ass
P

haseI only

D
ouble P

ass
P

haseI only

S
ingle P

ass
Lattice D

etection

D
ouble P

ass
Lattice D

etection

(a) All OCR Readers

0

50

100

150

200

N
um

be
r

of
 r

ec
og

ni
ze

d
ca

rd
s

Readout Success
OCR OR barcode correct

S
ingle P

ass A
lladjust

P
haseI only

D
ouble P

ass A
lladjust

P
haseI only

S
ingle P

ass
P

haseI only

D
ouble P

ass
P

haseI only

S
ingle P

ass
Lattice D

etection

D
ouble P

ass
Lattice D

etection

(b) OCR OR Bar Code

0

50

100

150

200

N
um

be
r

of
 r

ec
og

ni
ze

d
ca

rd
s

Readout Success
OCR AND barcode correct

S
ingle P

ass A
lladjust

P
haseI only

D
ouble P

ass A
lladjust

P
haseI only

S
ingle P

ass
P

haseI only

D
ouble P

ass
P

haseI only

S
ingle P

ass
Lattice D

etection

D
ouble P

ass
Lattice D

etection

(c) OCR AND Bar Code

Figure 31

4.5 Results for Edgemap Variant B

Timing

40

0

20

40

60

80

100

120

R
un

tim
e

[s
]

Runtime Total

S
ingle P

ass A
lladjust

P
haseI only

D
ouble P

ass A
lladjust

P
haseI only

S
ingle P

ass
P

haseI only

D
ouble P

ass
P

haseI only

S
ingle P

ass
Lattice D

etection

D
ouble P

ass
Lattice D

etection

Figure 32

41

4

6

8

10

12

14

R
un

tim
e

[s
]

Runtime Card Extraction

S
ingle P

ass A
lladjust

P
haseI only

D
ouble P

ass A
lladjust

P
haseI only

S
ingle P

ass
P

haseI only

D
ouble P

ass
P

haseI only

S
ingle P

ass
Lattice D

etection

D
ouble P

ass
Lattice D

etection

Figure 33

42

0

10

20

30

40

50

60

70

80

R
un

tim
e

[s
]

Runtime Lattice Detection

S
ingle P

ass A
lladjust

P
haseI only

D
ouble P

ass A
lladjust

P
haseI only

S
ingle P

ass
P

haseI only

D
ouble P

ass
P

haseI only

S
ingle P

ass
Lattice D

etection

D
ouble P

ass
Lattice D

etection

Figure 34

43

Readout Success

0

50

100

150

200

N
um

be
r

of
 r

ec
og

ni
ze

d
ba

rc
od

es

Barcode Readout Success

S
ingle P

ass A
lladjust

P
haseI only

D
ouble P

ass A
lladjust

P
haseI only

S
ingle P

ass
P

haseI only

D
ouble P

ass
P

haseI only

S
ingle P

ass
Lattice D

etection

D
ouble P

ass
Lattice D

etection

Figure 35

0

50

100

150

200

N
um

be
r

of
 r

ec
og

ni
ze

d
te

xt
s

OCR Readout Success
MATLAB OCR Engine

S
ingle P

ass A
lladjust

P
haseI only

D
ouble P

ass A
lladjust

P
haseI only

S
ingle P

ass
P

haseI only

D
ouble P

ass
P

haseI only

S
ingle P

ass
Lattice D

etection

D
ouble P

ass
Lattice D

etection

(a) Matlab

0

50

100

150

200

N
um

be
r

of
 r

ec
og

ni
ze

d
te

xt
s

OCR Readout Success
OCRAD OCR Engine

S
ingle P

ass A
lladjust

P
haseI only

D
ouble P

ass A
lladjust

P
haseI only

S
ingle P

ass
P

haseI only

D
ouble P

ass
P

haseI only

S
ingle P

ass
Lattice D

etection

D
ouble P

ass
Lattice D

etection

(b) OCRAD

0

50

100

150

200

N
um

be
r

of
 r

ec
og

ni
ze

d
te

xt
s

OCR Readout Success
Tesseract OCR Engine

S
ingle P

ass A
lladjust

P
haseI only

D
ouble P

ass A
lladjust

P
haseI only

S
ingle P

ass
P

haseI only

D
ouble P

ass
P

haseI only

S
ingle P

ass
Lattice D

etection

D
ouble P

ass
Lattice D

etection

(c) Tesseract

Figure 36

44

0

50

100

150

N
um

be
r

of
 r

ec
og

ni
ze

d
te

xt
s

Readout Success
Matlab OCR Reader Edit Distance

S
ingle P

ass A
lladjust

P
haseI only

D
ouble P

ass A
lladjust

P
haseI only

S
ingle P

ass
P

haseI only

D
ouble P

ass
P

haseI only

S
ingle P

ass
Lattice D

etection

D
ouble P

ass
Lattice D

etection

Identical
Edit Distance 1
Edit Distance 2
Edit Distance 3
Edit Distance 4
Edit Distance > 4
No readout

Figure 37

0

50

100

150

N
um

be
r

of
 r

ec
og

ni
ze

d
te

xt
s

Readout Success
OCRAD OCR Reader Edit Distance

S
ingle P

ass A
lladjust

P
haseI only

D
ouble P

ass A
lladjust

P
haseI only

S
ingle P

ass
P

haseI only

D
ouble P

ass
P

haseI only

S
ingle P

ass
Lattice D

etection

D
ouble P

ass
Lattice D

etection

Identical
Edit Distance 1
Edit Distance 2
Edit Distance 3
Edit Distance 4
Edit Distance > 4
No readout

Figure 38

45

0

50

100

150
N

um
be

r
of

 r
ec

og
ni

ze
d

te
xt

s

Readout Success
Tesseract OCR Reader Edit Distance

S
ingle P

ass A
lladjust

P
haseI only

D
ouble P

ass A
lladjust

P
haseI only

S
ingle P

ass
P

haseI only

D
ouble P

ass
P

haseI only

S
ingle P

ass
Lattice D

etection

D
ouble P

ass
Lattice D

etection

Identical
Edit Distance 1
Edit Distance 2
Edit Distance 3
Edit Distance 4
Edit Distance > 4
No readout

Figure 39

0

50

100

150

200

N
um

be
r

of
 r

ec
og

ni
ze

d
te

xt
s

OCR Readout Success
Combined OCR

S
ingle P

ass A
lladjust

P
haseI only

D
ouble P

ass A
lladjust

P
haseI only

S
ingle P

ass
P

haseI only

D
ouble P

ass
P

haseI only

S
ingle P

ass
Lattice D

etection

D
ouble P

ass
Lattice D

etection

(a) All OCR Readers

0

50

100

150

200

N
um

be
r

of
 r

ec
og

ni
ze

d
ca

rd
s

Readout Success
OCR OR barcode correct

S
ingle P

ass A
lladjust

P
haseI only

D
ouble P

ass A
lladjust

P
haseI only

S
ingle P

ass
P

haseI only

D
ouble P

ass
P

haseI only

S
ingle P

ass
Lattice D

etection

D
ouble P

ass
Lattice D

etection

(b) OCR OR Bar Code

0

50

100

150

200

N
um

be
r

of
 r

ec
og

ni
ze

d
ca

rd
s

Readout Success
OCR AND barcode correct

S
ingle P

ass A
lladjust

P
haseI only

D
ouble P

ass A
lladjust

P
haseI only

S
ingle P

ass
P

haseI only

D
ouble P

ass
P

haseI only

S
ingle P

ass
Lattice D

etection

D
ouble P

ass
Lattice D

etection

(c) OCR AND Bar Code

Figure 40

4.6 Summary

We observe that the bar code readout is more robust than the OCR readout.
Furthermore combining both results does not yield to a significant overall
improvement of the total readout success, i.e. if the OCR reader is successful
then the bar code readout has been successful as well. Furthermore, again
combining different OCR readers does not lead to a significant improvement
of OCR readout success. Given the OCR reader we observe that the OCRAD
reader yields the best result without any post-processing. Looking at the

46

edit distance of the OCRAD Readout that are not identical to the original
input we observe that the OCRAD reader is more robust than Tesseract
or Matlab: The Matlab OCR Reader edit distance of one and two are
in the same order of magnitude than the identical ones. For Tesseract, the
probability of having an edit distance of two or three is very high. We observe
that the results for edgemap Variant B (the more blurry one) are generally
more successful than the readout results originating from Variant A.

Moreover, if we focus on readout success all algorithm variants for edgemap
Variant B outperform the baseline approach. Furthermore, for both edgemap
variants the Full Lattice Detection algorithm does not lead to any improve-
ments against the Phase I only variants. On the contrary: For edgemap Vari-
ant A, the algorihm’s readout is far behind the Phase I only variants. This
leads to the conclusion that the additional runtime spend to rectify and fur-
ther developing the lattice is not paying off. That means if we only perform
Phase I of the lattice dection algorithm, we obtain a runtime below 20s.
Furthermore, this runtime is more deterministic and robust against outliers.
Additionally, if we focus on runtime the the Phase I only variants for both
edgemap variants outperform the baseline variants by far, while the Full
Lattice Detection variant is borderline.

While from a runtime perspective the Alladjust variant is slightly slower
than the Only Correct Point Labeling variant the extra effort does not guar-
antee a better readout success. As a matter of fact the results for edgemap
variants A and B differ, so we cannot conclude if there is a significant differ-
ence or not. The same reasoning can be applied to the Single Pass vs Double
Pass variants: While the bar code readout success is inconsistent, the OCR
readers readout success show a tendency to Double Pass with edgemap Vari-
ant A, while the Single Pass variant is prefered by OCR readers in edgemap
Variant B.

5 Future Work

In this section we propose further optimization and research directions that
our previous work has paved the way for.

5.1 Preprocessing of OCR Readouts

The accuracy in all of the OCR methods used is very fluctuant and in general
less accurate than the bar code extraction. However, in our evaluation we
did not preprocess any extracted text-patch. Future versions might optimize
the text readout e.g. by sharpening, thresholding before passing it to the

47

OCR readers to get a better OCR result. For example, the authors of the
Tesseract OCR engine claim that image preprocessing can rapidly increases
the detection rate of their OCR reader [21].

5.2 Heuristic for Pseudonym Readout

The current experimental results show that the automated readout of the bar
code is very robust against and works more reliable than the OCR readout.
However, in the event that the bar code is not or only partially readable, our
current architecture has laid the foundation of future algorithms to compute
the most probable result.

5.3 Consideration of Corner Points

Currently, we only consider the innermost points of the color reference card.
However, future versions might also consider the corner points of the outer
color patch in the color reference card. This might yield a better result in
the calculation of the perspective transform. However, currently our point
labeling of the corner points does not consider intersection points without
direct color neighbors i.e. for the edge corner points an individual feature
vector has to be computed.s

5.4 Performance Improvements for Point Labeling

For large amounts of points the complexity of the point labeling is quadratic
and hence does not scale with larger numbers of points. While this problem is
negligible when the full lattice detection algorithm is performed (the lattice
intersection points are typically in the same order of magnitude than the real
lattice points), this becomes a bottleneck when using uniform equidistant
sampling or a larger number of candidate points.

6 Conclusion

In this paper we proposed an extension of the framework proposed by Jose el
al. [3] to include the study subject’s pseudonym onto a color checker reference
card that is placed within the image to be included in the trial. We build
a modular algorithm, which steps can be rearranged in different ways. We
evaluated some of those arrangements. Furthermore, we came to the conclu-
sion that our proposed fine adjustment as well as the point labeling of Jose

48

et al. are so good that we do not need the run the complete lattice detec-
tion algorithm, since the results of Phase I of this algorithm does not only
suffice but yields even better results than performing the whole algorithm.
In addition, by only using Phase I we gain a significant performance gain of
up to approximately 365% (mean) or 279% (median) for Edgemap Variant
A and 315% (mean) or 520% (median) for Edgemap Variant B. Apart from
runtime performance our Phase-I only variants all outperform or equal the
result of the baseline variants. Our thoughts for future improvements may
further optimize those results.

References

[1] Deserno TM, Sárándi I, Jose A, Haak D, Jonas S, Specht P, et al. To-
wards quantitative assessment of calciphylaxis. In: SPIE Medical Imag-
ing. International Society for Optics and Photonics; 2014. p. 90353C–
90353C.

[2] Jackowski M, Goshtasby A, Bines S, Roseman D, Yu C. Correcting the
geometry and color of digital images. Pattern Analysis and Machine
Intelligence, IEEE Transactions on. 1997;19(10):1152–1158.

[3] Jose A, Haak D, Jonas S, Brandenburg V, Deserno TM. Human wound
photogrammetry with low-cost hardware based on automatic calibration
of geometry and color. In: SPIE Medical Imaging. International Society
for Optics and Photonics; 2015. p. 94143J–94143J.

[4] Deserno TM, Haak D, Brandenburg V, Deserno V, Classen C, Specht
P. Integrated image data and medical record management for rare dis-
ease registries. A general framework and its instantiation to the German
calciphylaxis registry. Journal of digital imaging. 2014;27(6):702–713.

[5] Haak D, Gehlen J, Jonas S, Deserno TM. OC ToGo: bed site image
integration into OpenClinica with mobile devices; 2014. Available from:
http://dx.doi.org/10.1117/12.2042847.

[6] Macduff: the Macbeth ColorChecker Finder;. Available from: https:
//github.com/ryanfb/macduff.

[7] Bianco S, Cusano C. Color target localization under varying illumination
conditions. In: Computational Color Imaging. Springer; 2011. p. 245–
255.

49

http://dx.doi.org/10.1117/12.2042847
https://github.com/ryanfb/macduff
https://github.com/ryanfb/macduff

[8] Brunner RT, Hayward D. Automatic detection of calibration charts in
images; 2011. US Patent 8,073,248.

[9] Ernst A, Papst A, Ruf T, Garbas JU. Check my chart: A robust color
chart tracker for colorimetric camera calibration. In: Proceedings of the
6th International Conference on Computer Vision/Computer Graphics
Collaboration Techniques and Applications. ACM; 2013. p. 5.

[10] Kordecki A, Palus H. Automatic detection of colour charts in images.
Przegląd Elektrotechniczny. 2014;90(9):197–202.

[11] Wang S, Minagawa A, Fan W, Sun J, Xu L. A Fast and Robust Multi-
color Object Detection Method with Application to Color Chart Detec-
tion. In: PRICAI 2014: Trends in Artificial Intelligence. Springer; 2014.
p. 345–356.

[12] Park M, Brocklehurst K, Collins RT, Liu Y. Deformed lattice detection
in real-world images using mean-shift belief propagation. Pattern Anal-
ysis and Machine Intelligence, IEEE Transactions on. 2009;31(10):1804–
1816.

[13] McCamy CS, Marcus H, Davidson J. A color-rendition chart. J App
Photog Eng. 1976;2(3):95–99.

[14] Carayon P, Wetterneck TB, Hundt AS, Ozkaynak M, DeSilvey J, Lud-
wig B, et al. Evaluation of nurse interaction with bar code medication
administration technology in the work environment. Journal of Patient
Safety. 2007;3(1):34–42.

[15] Paoletti RD, Suess TM, Lesko MG, Feroli AA, Kennel JA, Mahler JM,
et al. Using bar-code technology and medication observation method-
ology for safer medication administration. American journal of health-
system pharmacy. 2007;64(5).

[16] Information technology – Automatic identification and data capture
techniques – EAN/UPC bar code symbology specification. Geneva,
Switzerland: International Organization for Standardization; 2007.
15420:2009.

[17] ZXing;. Available from: https://github.com/zxing/zxing.

[18] Teseract OCR Software;. Available from: https://github.com/
tesseract-ocr/tesseract/.

50

https://github.com/zxing/zxing
https://github.com/tesseract-ocr/tesseract/
https://github.com/tesseract-ocr/tesseract/

[19] Ocrad – The GNU OCR;. Available from: https://www.gnu.org/
software/ocrad/.

[20] Recognize Text Using Optical Character Recognition (OCR);. Avail-
able from: http://de.mathworks.com/help/vision/examples/
recognize-text-using-optical-character-recognition-ocr.
html.

[21] Improving the quality of the output;. Available from: https://github.
com/tesseract-ocr/tesseract/wiki/ImproveQuality.

51

https://www.gnu.org/software/ocrad/
https://www.gnu.org/software/ocrad/
http://de.mathworks.com/help/vision/examples/recognize-text-using-optical-character-recognition-ocr.html
http://de.mathworks.com/help/vision/examples/recognize-text-using-optical-character-recognition-ocr.html
http://de.mathworks.com/help/vision/examples/recognize-text-using-optical-character-recognition-ocr.html
https://github.com/tesseract-ocr/tesseract/wiki/ImproveQuality
https://github.com/tesseract-ocr/tesseract/wiki/ImproveQuality

	Introduction
	Photographic Documentation in Clinical Trials using Smart Phones
	Combining Color Cards with Subject-Pseudonyms
	Related Work
	Outline

	Background
	Macbeth ColorChecker Cards
	Bar Codes and EAN-8
	Optical Character Recognition (OCR)
	Deformed Lattice Detection Algorithm
	Communication Architecture

	Card Extraction
	Outline
	Edgemap Calculation
	Lattice Detection Algorithm
	Point Labeling
	Fine Adjustment
	Perspective Transform
	Bar code readout and OCR readout
	Algorithm Variants
	Different Edgemaps
	Variant: Single Pass vs. Double Pass
	Variant: Full Lattice Detection vs. Phase I only
	Variant: Alladjust vs. Only Adjust Point Labeling
	Variant: Equidistant Sampling as Baseline

	Experimental Results
	Setup and Dataset
	Evaluation Criteria
	Baseline
	Results for Edgemap Variant A
	Results for Edgemap Variant B
	Summary

	Future Work
	Preprocessing of OCR Readouts
	Heuristic for Pseudonym Readout
	Consideration of Corner Points
	Performance Improvements for Point Labeling

	Conclusion

